Appendix B

Air Quality, Health Risk Assessment, Greenhouse Gas, and Energy

Valley Rail Sacramento Extension Project Final Health Risk Assessment

AECOM has prepared this technical report to describe the results of the Health Risk Assessment for the proposed Valley Rail Sacramento Extension Project. The Health Risk Assessment has been requested by the Sacramento Metropolitan Air Quality Management District (SMAQMD), for compliance with the California Environmental Quality Act (CEQA) and is consistent with the San Joaquin Valley Air Pollution Control District Guidance for Air Dispersion Modeling (SJVAPCD, 2006), APR – 1906 Framework for Performing Health Risk Assessments (SJVAPCD, 2018), 2017 Bay Area Air Quality Management District CEQA Guidelines (BAAQMD, 2017), the California Air Pollution Control Officers Association (CAPCOA, 2009), the California Air Resources Board (ARB, 2017), the Office of Environmental Health Hazard Assessment (OEHHA, 2015), SMAQMD Mobile Sources Air Toxics (MSAT) Protocol (SMAQMD, 2019), and the U.S. Environmental Protection Agency (EPA, 2017). This air quality technical report describes the project, the approach to the Health Risk Assessment, and the modeling methodologies used to perform the analysis.

This report addresses the following topics, as listed below by section:

- **1.0 Introduction** describes the project understanding and the objectives and methodology for the Health Risk Assessment.
- **2.0 Emissions Estimates** describes the methods used to estimate the emissions of toxic air contaminants generated from project construction and operations.
- **3.0 Air Dispersion Modeling** describes the methods for modeling pollutant dispersion and estimating pollutant concentration contributions from project sources.
- **4.0 Health Risk Analysis Methodology** provides an overview of the methodology for estimating potential health risks to new and existing sensitive receptors.
- **5.0 Health Risk Analysis Results** provides the results of the excess cancer risk at the project's maximally exposed individual (MEI) and cumulative assessment based on SMAQMD MSAT Protocol Guidance Document.
- **6.0 Uncertainties** provides a discussion of uncertainties and limitations associated with the Health Risk Analysis.
- 7.0 **References** lists the sources cited in the air quality Health Risk Assessment.

1. Introduction

1.1. Project Understanding

The San Joaquin Joint Powers Authority (SJJPA) and the San Joaquin Regional Rail Commission (SJRRC), which manage the Amtrak San Joaquins and the Altamont Corridor Express (ACE), respectively, are jointly undertaking the planning, design, and environmental review of the Valley Rail Sacramento Extension Project (proposed project), a proposed passenger rail service line between Stockton and Sacramento, California.

As outlined in the Environmental Impact Report (EIR), the proposed project is designed to expand passenger rail service to new markets in the San Joaquin and Sacramento counties; increase frequency of service; increase passenger rail ridership; reduce travel time between the San Joaquin Valley and the Sacramento area; augment existing transit capacity and provide transit connections; provide an alternative to single-use vehicle commuting and reduce automobile traffic congestion; improve regional air quality; reduce greenhouse gas (GHG) emissions; and support local and regional land use development plans and policies. In addition, the proposed project would contribute to geographic equality by providing increased connectivity within the Central Valley.

1.2. Proposed Project

The proposed project would expand Amtrak San Joaquins and ACE passenger rail services to the greater Sacramento area through the construction of five new rail stations and track improvements along the Union Pacific Railroad (UPRR) Sacramento Subdivision (**Figures 1-1** and **1-2**).¹

Each proposed station and track improvement would be located along the existing UPRR alignment Sacramento Subdivision. For stations that include alternatives or variants (Lodi Station), only one alternative would be selected for implementation. The proposed stations include:

- Lodi Station a 13-acre site located along the south side of SR 12 just east of the existing UPRR alignment.
- Lodi Station South Alternative this alternative design and location for Lodi Station would be constructed on a 15-acre site along the north side of West Harney Lane just east of the UPRR alignment.
- **City College Station** would be constructed adjacent to the existing SacRT City College light rail station north of Sutterville Road in Sacramento. The station would also include the construction of tracks for ACE trains within the existing station area.
- Midtown Sacramento Station would be constructed near Q Street between 19th Street and 20th Street in Sacramento. This site was selected to minimize potential impacts to east-west roadways in Midtown during times when ACE and San Joaquins trains are at the station.
- Old North Sacramento Station an 8-acre site has been selected for the construction of this station along the west side of Acoma Street just north of El Monte Avenue in Sacramento.

¹ A subdivision is a portion of railroad or railway that operates under a single timetable (authority for train movement in the area).

• Natomas/Sacramento Airport Station – would be constructed on an 8.4-acre site along the east side of Blacktop Road just south of West Elkhorn Boulevard. Shuttle services to and from Sacramento International Airport would be provided and timed to meet all incoming and departing trains. This station would also include layover tracks south of the platform to accommodate ACE and Amtrak train layovers between service runs.

In addition to the proposed six new stations, track improvements to the existing UPRR tack at various locations along the Sacramento Subdivision are included as part of the proposed project. These improvements are necessary to increase allowable train speeds and meeting operational requirements. Track improvement fall into one of the following four categories: (1) track curve reconstruction; (2) upgrades to existing passing siding track; (3) new passing siding tracks; and (4) new crossover tracks. Note that there is overlap at 3 of the 4 curve reconstruction sites with siding improvements.

Track curve reconstruction would take place at four locations (see **Table 1-1**) at existing track curves, which involves increasing the curve radii and shifting the centerline of the mainline track. These improvements would increase the allowable speeds of the curves.

Upgrades to existing passing siding tracks and construction of new siding would accommodate the operational requirements UPRR needs to allow passenger service to run along the rail line. Upgrades at existing sites would occur at six sites, while new UPRR sidings are needed at two sites. **Table 1-1** provides the sites affected by these track improvements.

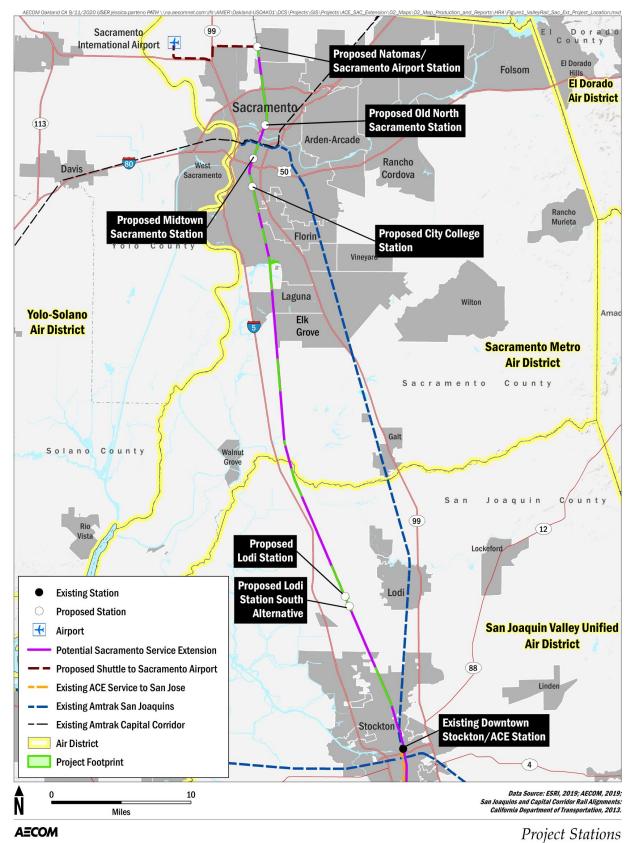

A new crossover track and signaling would be installed just south of the proposed City College Station to allow northbound and southbound passenger trains to pass, using the existing track siding south of the proposed station.

Table 1-1. Hoposed Hack improvement locations			
Track Curve Upgrades to Existing		New Passing Siding	New Crossover Track
Reconstruction	Passing Siding Track	Tracks	
North of Elk	Hammer Lane Siding	Lodi Siding Variants	City College Station
Grove	Upgrade		
Thornton	Thornton Siding		
Hammer Lane	Upgrade/Extension		
Existing	Phillips Siding		
Railroad	Upgrade/Extension		
Realignment	Pollock Siding Upgrade		
	South Sacramento Siding		
	Upgrade		
	Del Paso Siding		
	Upgrade/Extension		

Table 1-1: Proposed Track Improvement Locations

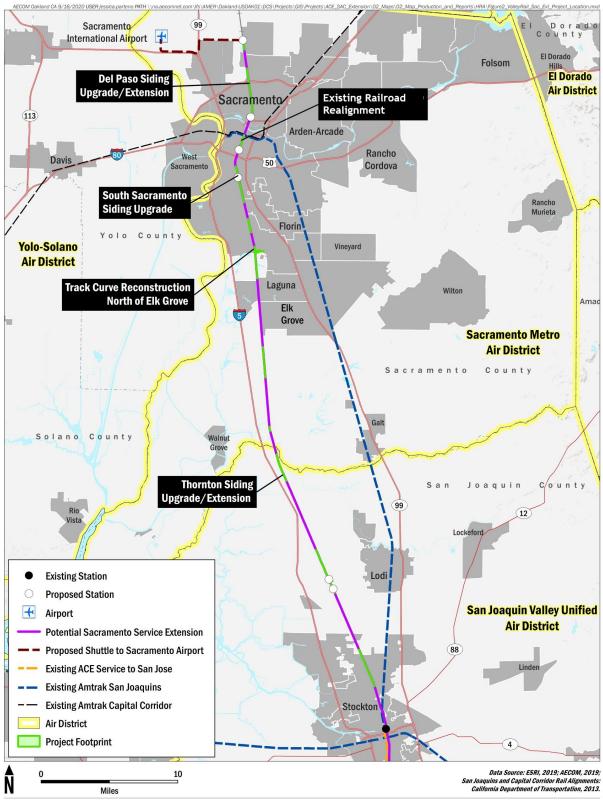
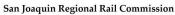


Figure 1-1: Project Stations



San Joaquin Regional Rail Commission

Figure 1-2: Project Track Improvements

AECOM

Project Track Improvements

1.3. Health Risk Background

The United States Environmental Protection Agency (U.S. EPA) regulates hazardous air pollutants, also known as toxic air contaminants or TACs. Toxic air contaminants may be emitted by stationary, area, or mobile sources. Common stationary sources of toxic air contaminant emissions include gasoline stations, dry cleaners, and diesel backup generators, which are subject to the requirements of local air districts' permits. The other, often more substantial, sources of toxic air contaminant emissions are motor vehicles on freeways, on high-volume roadways, or in other areas with high numbers of diesel vehicles, such as distribution centers. Off-road mobile sources are also major contributors of toxic air contaminant emissions and include construction equipment, ships, and trains.

Toxic air contaminants collectively refer to a diverse group of air pollutants that are capable of causing chronic (i.e., long-duration) and acute (i.e., severe but short-term) adverse effects on human health, including carcinogenic effects. Human health effects of toxic air contaminants include birth defects, neurological damage, cancer, and mortality. There are hundreds of different types of toxic air contaminants with varying degrees of toxicity. The health risks of individual toxic air contaminants vary greatly; at a given level of exposure, one toxic air contaminant may pose a hazard that is many times greater than another.

Toxic air contaminants can be separated into carcinogens and noncarcinogens based on the nature of the effects associated with exposure to the pollutant. For regulatory purposes, carcinogens are assumed to have no safe threshold below which health impacts would not occur. Any exposure to a carcinogen poses some risk of contracting cancer. Noncarcinogens differ in that there is generally assumed to be a safe level of exposure below which no negative health impact is believed to occur. These levels are determined on a pollutant-by-pollutant basis.

Air pollution does not affect every individual in the population in the same way, and some groups are more sensitive than others to adverse health effects. Land uses such as residences, schools, daycare centers, hospitals, and nursing and convalescent homes are considered most sensitive to poor air quality, because the population groups associated with these uses are more susceptible to respiratory distress or, for residential receptors, their exposure time is greater than that for other land uses. Therefore, these groups are referred to as sensitive receptors.

1.4. Objective and Approach

The purpose of this Health Risk Assessment is to assess potential toxic air contaminant emission impacts associated with the proposed project. The analysis was conducted consistent with guidance and methodologies from local, regional, state and federal agencies, including the BAAQMD, CAPCOA, California ARB, OEHHA, SMAQMD MSAT Protocol, SJVAPCD, and the EPA.

This analysis evaluates health risk and hazard impacts of short-term construction and long-term operational emissions from the proposed project on existing offsite sensitive receptors within 500 feet of the proposed project emissions sources to determine the probability of contracting cancer over 70 years based on SJVAPCD guidance or 30 years based on SMAQMD guidance from two years of exposure. For construction, the project sources would exist within the proposed footprint of the rail station and along the track improvement sections (where applicable). There are discrete sites where construction would occur and, in many cases, there are existing residential areas or other sensitive land uses for which sensitive receptors were evaluated for potential health risk impacts from the proposed project. Construction and operations of the proposed project would occur throughout the length of the railway alignment between the existing Stockton ACE Station and the proposed Natomas/Sacramento Airport Station, which is

approximately 52-miles. Given the large number of construction sites and the various track alignments at each one, modeling all of them for operations would generally account for the majority of track alignments throughout the 52-mile line. As a result, every receptor used in the operational modeling runs were treated as sensitive. For operations, a 2-kilometer (km) (approximately 1.24-mile) segment along the track alignment (1 km to the north and south) was used to characterize the emissions over the rail line. The selected areas modeled serve as representative of other areas along the rail line that are in similar in their track orientation and meteorological conditions. Additional details on the source characterization and receptor placement are provided in Section 3.0.

For proposed rail stations that have alternatives (Lodi Station), only one of the options were modeled. The driving factors for only modeling one scenario of each of these stations included: (1) construction emissions and duration were the same; and (2) the track alignment did not change between the alternatives. For the proposed Lodi Station, the proposed alterative option was modeled. Modeling scenarios also included combining emissions from station and track improvements that would occur adjacent to or nearby each other and that are scheduled to occur in the same construction year, into a single model run, thereby presenting the maximum potential construction-related emissions that would be generated by the proposed project in those given locations. **Tables 1-2** and **1-3** list the station and track improvement construction and operational model scenarios.

Modeling Scenario	Stations/Track Improvements	Air District	Construction Year
Thornton	Thornton Siding Upgrade & Extension	SJVAPCD	2023
Lodi	Lodi Station; Lodi Siding		2021
North Elk Grove	Track Curve Reconstruction North of Elk Grove		2021
City College	City College Station; South Sacramento Siding Upgrades	SMAQMD	2023
Midtown Sacramento	Midtown Sacramento Station		2021
Old North Sacramento	Old North Sacramento Station		2023
Del Paso	Del Paso Siding Upgrade and Extension		2021
Natomas	Natomas/Sacramento Airport Station		2021
Notes: SJVAPCD = San Joaquin Valley Air Pollution Control District; SMAQMD = Sacramento Metropolitan Air Quality Management District.			

Modeling Scenario	Station/Track Segment	Air District
Stockton	Stockton ACE Station	
Thornton	Thornton Siding Upgrade & Extension	SJVAPCD
Lodi	Lodi Station	
North Elk Grove	North Elk Grove Track Curve Reconstruction	
City College	City College Station	
Freeport Curve	Existing Railroad Realignment	SMAQMD
Midtown Sacramento	Midtown Sacramento Station	
Old North Sacramento	Old North Sacramento Station	
Natomas	Natomas/Sacramento Airport Station	
	n Joaquin Valley Air Pollution Control Dis ality Management District.	trict; SMAQMD = Sacramento

Table 1-3: Operational Modeling Scenarios

1.5. Project Emissions Sources

This Health Risk Assessment evaluates the following sources of air pollutant emissions and exposures:

- 1. **Construction Emissions**: The proposed project's on-site construction-related emissions affecting local sensitive receptors within 500 feet of the respective construction area footprints. On-site emissions sources include off-road equipment and vehicles and diesel-powered locomotives idling on-site during the transport and delivery of rail materials.
- 2. **Operational Emissions**: The proposed project's operational emissions associated with the additional trains operating along the existing railway and at the proposed stations, affecting local sensitive receptors located with 500 feet of the project alignment. Operational emissions associated with the proposed Natomas/Sacramento Airport Station

2. Emissions Estimates

This Health Risk Assessment evaluates fine particulate matter (PM₁₀) emissions and emissions of diesel PM (assumed to be equivalent to PM₁₀ exhaust). These emissions estimates are then used to evaluate the excess cancer and chronic non-cancer risk a receptor is exposed to as a result of the proposed project. This section identifies the methodologies used to estimate these PM_{2.5} and PM₁₀ exhaust emissions.

The proposed project construction and operational air pollutant emissions were quantified according to guidance and methods from SMAQMD, SJVAPCD, California Air Resources Board (ARB), and U.S. EPA as previously referenced above. The process for determining the parameters and assumptions used to model emissions, along with the modeling methods, are described below. While there would be other emissions of criteria air pollutants and greenhouse gases generated as a result of the proposed project, the following focuses on the modeling parameters and methodology used to estimate project-related emissions of PM_{2.5} and PM₁₀ exhaust.² A summary of the emissions used in this analysis is provided in Attachment A of this document.

2.1. Construction Emissions

On-site construction-related PM exhaust emissions would be generated by off-road construction equipment, including on-site operations of diesel-powered locomotives to transport and deliver rail materials. Construction would occur throughout the project alignment but would be phased over approximately three years. The construction of each project element would include site work, rail work, and structural work. It is assumed that certain elements of each of these activities could overlap in time. Thus, maximum daily emissions were estimated assuming the maximum potential overlap of supporting construction activities (i.e., assuming that the maximum use of equipment and related construction activities would occur in a single day). To conservatively estimate maximum daily emissions, calculations accounted for the potential overlap of maximum daily emissions from concurrent construction phases for individual project elements, as well as the potential for concurrent construction of project elements throughout the project alignment that are anticipated to be constructed within the same year. Total annual emissions were based on actual annual use of equipment related construction activities that could occur in a given year and was not always a multiplication of maximum daily emissions by total days of work per year.

In cases for which a project improvement includes both a proposed and alternative improvement, emissions were estimated for all alternatives. To demonstrate the maximum daily and maximum annual emissions scenarios, the greater of the emissions estimates from a proposed versus alternative improvement were used. The HRA modeling scenarios presented in this report applied mitigated emissions estimates, as mitigation would be required to reduce construction-related mass emissions to levels that would not exceed the respective air district recommended thresholds of significance, irrespective of the HRA findings. Applied mitigation would require that off-road equipment greater than 25 horsepower used during construction and diesel-powered locomotives be powered by engines that meet or exceed Tier 4 emissions standards. Unmitigated and mitigated emissions estimates and detailed estimating methodology and calculations are provided in Appendix B-1.

² Emissions estimating methodology for non-DPM sources of criteria air pollutant and greenhouse gas emissions is available in Sections 3.3, "Air Quality," and 3.8, "Greenhouse Gas Emissions," of the Valley Rail Sacramento Extension Project EIR, respectively. Detailed modeling inputs, assumptions, and emissions estimate calculations are available in Appendix B of the Valley Rail Sacramento Extension Project EIR.

The following details the methodology for estimating exhaust PM emissions that would be generated by construction of the proposed project.

- Off-road equipment: Emission factors from off-road construction equipment were obtained from the California Air Pollution Control Officers Association's (CAPCOA) California Emissions Estimator Model (CalEEMod) (version 2016.3.2) User Guide, which provides values per unit of activity by calendar year for each pollutant for each equipment type. Construction emissions from the operation of diesel-fueled off-road equipment were estimated by multiplying construction equipment usage information by the equipment-specific emissions factors, based on aggregate model years and horsepower used in CalEEMod, which are derived from the California Air Resources Board's OFFROAD³ emissions inventory model. To conservatively estimate potential emissions, emission factors were based on an aggregate equipment fleet mix for the year 2021 (the earliest potential year of construction). The equipment inventory was developed with consideration for project-specific elements; where project-specific details were not available, CalEEMod default data was used.
- **Locomotives:** Emissions from diesel-powered locomotives used to transport rail materials during construction were quantified using EPA's 2009 locomotive engine emission standards and project-specific activity data (EPA, 2009). These locomotives were assumed to utilize a 1,500 horsepower, Tier 1 engine.
- On-site vehicles: Construction would include the use of on-site work trucks. Exhaust emission factors from on-site vehicles were obtained from the CARB Emission FACtor (EMFAC) model, EMFAC2017. Emission factors for on-site on-road vehicle use were based on 5 miles per hour (mph) emission rates for the aggregate model year of the fleet in the year 2021 (the earliest potential year of construction). The estimated maximum daily number and activity (hours on-site) of on-road vehicles to be used during each construction activity phase was a project-specific data input. Maximum daily on-site exhaust emissions from on-road motor vehicles were estimated by multiplying the appropriate emission factors by the project-specific on-road vehicle inventory. Emission factors for gasoline-powered light duty vehicles within the on-site vehicle fleet mix were adjusted using CARB's Off-model Adjustment Factors to account for the Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Par One: One National Program, adopted by the USEPA and the National Highway Traffic Safety Administration in 2019.

Total construction-related emissions for each project element used for the purposes of this Health Risk Assessment are summarized in **Table 2-1**.

³OFFROAD is ARB's emissions inventory database for off-road diesel engines, used to quantify the amount of pollutants from thousands of engines in equipment used in industrial applications, agriculture, construction, mining, oil drilling, power generation, and many other industries. The OFFROAD emission factors provided within the California Emissions Estimator Model (CalEEMod, Version 2016.3.2) were used to generate emission factors for the different types of equipment anticipated to be used by the proposed project. CalEEMod (Version 2016.3.2) is the statewide model recommended for use to quantify criteria air pollutant emissions.

Project Element	Construction Start Year	Construction Duration (months)	Total PM10 Exhaust (pounds)
LODI STATION	2021	14	
Off-Road Equipment & Locomotive			26.88
On-site Vehicles			2.71
Total			29.59
THORNTON SIDING UPGRADE & EXTENSION	2023	4	
Off-Road Equipment & Locomotive		·	9.15
On-site Vehicles			0.48
Total			9.63
LODI SIDING	2021	8	
Off-Road Equipment & Locomotive		·	18.29
On-site Vehicles			0.97
Total			19.25
CITY COLLEGE STATION	2023	8	
Off-Road Equipment & Locomotive		·	22.07
On-site Vehicles			1.32
Total			23.38
MIDTOWN SACRAMENTO STATION	2021	12	
Off-Road Equipment & Locomotive			28.20
On-site Vehicles			2.07
Total			30.28
OLD NORTH SACRAMENTO STATION	2023	14	
Off-Road Equipment & Locomotive		·	37.32
On-site Vehicles			2.82
Total			40.14
NATOMAS / SACRAMENTO AIRPORT STATION	2021	12	
Off-Road Equipment & Locomotive		·	27.57
On-site Vehicles			1.82
Total			29.39
TRACK CURVE RECONSTRUCTION NORTH OF NORTH ELK GROVE	2022	1	
Off-Road Equipment & Locomotive			2.30
On-site Vehicles			0.12
Total			2.42

Table 2-1: On-site Construction-Related Emissions for Each Station and Track Improvement Site

Project Element	Construction Start Year	Construction Duration (months)	Total PM10 Exhaust (pounds)
SOUTH SACRAMENTO SIDING UPGRADE	2023	4	
Off-Road Equipment & Locomotive			10.97
On-site Vehicles			0.48
Total			11.44
DEL PASO SIDING UPGRADE & EXTENSION	2021	12	
Off-Road Equipment & Locomotive			34.98
On-site Vehicles			2.15
Total			37.13

Source: Modeled by AECOM in August 2020.

Note: For detailed emissions modeling inputs and calculations, see Appendix B-1.

2.2. Operational Emissions

Operational emissions sources from the proposed project that were evaluated as a part of this Health Risk Assessment include locomotive emissions from passenger rail service from the existing Stockton Downtown/ACE Station to the proposed Natomas/Sacramento Airport Station, inclusive of stops at the proposed new stations along the route, and on-road vehicle emissions from the proposed shuttle bus between the proposed Natomas/Sacramento Airport Station and the Sacramento International Airport. The following details the methodology for estimating operational exhaust PM emissions that would be generated by activities associated with the proposed project.

• **Passenger Train Operations:** The proposed new passenger rail service would result in diesel fuel combustion and associated criteria pollutant emissions from train activity. Daily one-way trips are anticipated to include the extension of existing train lines that currently go to Stockton, as well as the initiation of new trips between Stockton and Natomas, for a total of 14 one-way trips between the existing Stockton Downtown/ACE Station and the proposed Natomas/Sacramento Airport station.

Diesel locomotive engine power is controlled by "notched" throttles. Idling, braking, and moving the locomotive is conducted by placing the throttle in one of several available "notch" settings. A locomotive's duty cycle is a description of how much, on average, the locomotive spends in each notch setting while operating. PM emission factors for calculations were based on EPA's 2009 Emission Factors for Locomotives Technical Highlights (EPA-240-F-09-025). Emission standards are defined per unit of activity (in grams per horsepower-hour) for Tier 4 engines. Emissions were estimated using operational hours estimates for the new passenger train operations that would result from the proposed project, inclusive of idling time at each station. Daily criteria pollutant emissions were annualized conservatively assuming 365 operating days per year. Emissions were apportioned to SJVAPCD and SMAQMD based on the number of track miles within each air district.

As noted previously, this Health Risk Assessment uses a 2-km (approximately 1.24-mile) segment at identified representative station and other railway locations along the track alignment was used to characterize the emissions over the rail line. Accordingly, operational emissions were estimated for the representative 2-km alignment segments. These emissions were further broken down into those emissions associated with the longer duration of time spent travelling at slower speeds, and the time spent travelling at higher speeds within the 2-km segment as a train approaches and departs a station; this was used to weight the distribution of emissions throughout the 2-km segment and present the maximum potential impact in areas where the higher proportion of operational emissions would occur.

• Shuttle Bus Operations: The proposed shuttle bus from the Natomas/Sacramento Airport Station to the Sacramento International Airport would generate emissions from on-road travel. The shuttle bus was assumed to operate 7 round-trips per day. Exhaust emission factors were obtained from EMFAC2017. Emission factors were based on emission rates for aggregate speed and model year for the Urban Bus vehicle category, assuming a diesel-powered bus. Maximum daily exhaust emissions were estimated by multiplying the emission factors by the anticipated daily VMT (daily trips x trip distance).

Operational emissions that would be generated by the proposed project within the representative modeling domains described above and used for the purposes of this Health Risk Assessment are summarized in **Table 2-2**.

Operational Source	Exhaust PM10 (pounds per year)
Passenger Train Operations (2-km segment)	9.9593
Shuttle Bus Operations	0.3573

Table 2-2: Operational Emissions within the Modeling Domain ofRepresentative Locations along the Proposed Project Alignment

Source: Modeled by AECOM in August 2020.

Note: for detailed emissions modeling inputs and calculations, see Appendix B-1.

3. Air Dispersion Modeling

The American Meteorological Society/U.S. EPA Regulatory Model (AERMOD) dispersion model (Version 19191) was used to estimate pollutant concentrations at specific distances from project emission sources, in conjunction with representative meteorological data. The meteorological dataset varied based on the location of the proposed station and track improvement. Three meteorological sites were selected based on their proximity to the proposed project. These included; Stockton Metropolitan Airport, Sacramento Executive Airport, and Sacramento International Airport. **Figure 3-1** shows the three meteorological airport sites relative to the proposed project sites. **Table 3-1** summarizes the meteorological datasets selected for each station and track improvement.

Stockton Metropolitan Airport	Sacramento Executive Airport	Sacramento International Airport
 Stockton ACE Station Thornton Track Improvements Lodi Station & Track Improvements 	 Track Curve Reconstruction North of Elk Grove City College Station South Sacramento Track Improvements Existing Railroad Realignment Midtown Sacramento Station 	 Old North Sacramento Station Del Paso Track Improvements Natomas/Sacramento Airport Station

Table 3-1: Selection of Meteorological Data for Each Station and Track Imp	provement Site

The Stockton Metropolitan Airport meteorological data was obtained from the SJVAPCD FTP⁴ server for a five-year period from 2013 through 2017. Both the Sacramento Executive and Sacramento International airport meteorological data were obtained from SMAQMD's CEQA Guidance & Tools website (SMAQMD 2020) for a five-year period from 2014 through 2018. All three of these datasets were processed by the respective air districts in model-ready format. The selection of the three meteorological stations for the project sites are consistent with guidelines issued by ARB (ARB, 2017) and U.S. EPA Appendix W (U.S. EPA, 2017) and is described in more detail below.

3.1. Selection of Representative Meteorological Data

As depicted in **Figure 3-1**, construction and operation of the proposed project would occur in two counties: San Joaquin County and Sacramento County. The proposed project sites in San Joaquin County include: the Stockton ACE Station (note that there are no proposed improvements at this station, but operations would include an increase in passenger train activity), Thornton track improvements, and Lodi Station. The existing Stockton ACE Station is located approximately 4 miles to the north of the Stockton Metropolitan Airport with only flat terrain separating the two. The proposed Lodi Station and Thornton track improvements would be approximately 13 miles and 20 miles to the north-northwest of the Stockton Metropolitan Airport, respectively. This meteorological station is still the closest in proximity for these two sites with little to no elevated terrain obstructions between them and the airport. **Figure 3-2** shows the 5year (2013-2017) near-surface wind pattern for Stockton Metropolitan Airport. For these reasons along with these three proposed project sites being in San Joaquin County, the Stockton Metropolitan Airport is representative for dispersion modeling.

⁴ File Transfer Protocol (FTP) is a standard network protocol used to transfer electronic files between a client and a server.

The remaining sites in Sacramento County are located either north or south of the American River. This water feature served as a natural divider in selecting either the Sacramento International or Sacramento Executive airports in this county. To the north of the American River, the proposed Natomas/Sacramento Airport Station is approximately 5 miles due east of the Sacramento International Airport. Only a few miles to the south of Natomas, are the proposed track improvement site of Del Paso and the Old North Sacramento Station. **Figure 3-3** shows the 5-year (2014-2018) near-surface wind pattern for the Sacramento International Airport. Given the proximity and generally flat surroundings, the Sacramento International Airport is the most representative meteorological dataset for proposed project elements north of the American River.

The proposed Track Curve Reconstruction North of Elk Grove, City College Station, Midtown Sacramento Station, and South Sacramento and Existing Railroad Realignment track improvements are all located south of the American River and east of the Sacramento River. The Sacramento Executive Airport is situated within about 4 miles from all these proposed sites and is also located south and east of the American and Sacramento Rivers, respectively. The 5-year (2014-2018) near surface wind pattern, shown in **Figure 3-4**, appears to capture the localized influence of the two rivers with the predominant flows being nearly parallel to the two water features. Therefore, the most representative meteorological station to use for modeling for the group of proposed project elements in Sacramento County to the south of the American River is the Sacramento Executive Airport.

3.2. Receptor Locations

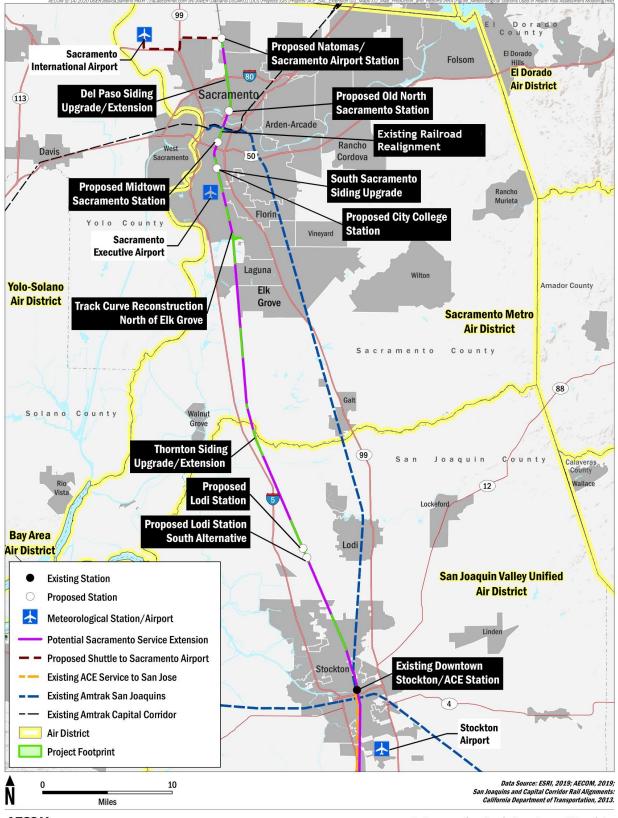

Receptors were placed within 500 feet of the rail alignment along sections undergoing track improvement construction and within 500 feet of station construction. The closest receptors were placed 30 feet from the center of the track alignment then extended outward at 70⁵, 100, 150, 200, 250, 300, 350, 400, 450 and 500 feet, consistent with SJVAPCD guidance. In the event a residential dwelling, school or childcare center was identified to fall just outside the 500-foot distance, a discrete receptor was added to the modeling grid for that site to ensure it was captured in the modeling analysis. The receptors were assigned a flagpole height of 5.9 feet (1.8 meters) for the ground-level residences.

Figure 3-5 provides an example of the receptor grid used for the construction of the proposed City College Station and track improvements. Receptor figures for all the sites modeled are provided in **Attachment A** to this document.

Terrain elevations were obtained from commercially available digital terrain elevations developed by the U.S. Geological Survey by using its National Elevation Dataset. The National Elevation Dataset data provide terrain elevations with 3.28-feet (1-meter) vertical resolution and 32.81-feet (10-meter) (1/3 arc-second) horizontal resolution based on a Universal Transverse Mercator (UTM) coordinate system. The U.S. Geological Survey specifies coordinates in North American Datum 83, UTM Zone 10. Lakes Environmental software was used to process the National Elevation Dataset data and assign elevations to the receptor locations and sources.

⁵ SJVAPCD guidance recommends distance of 75 feet, but for ease of generating the receptor grid, multiples of 10 were used and a slightly closer distance at 70 feet was selected.

Figure 3-1: Locations of Meteorological Stations Relative to Project Sites

AECOM San Joaquin Regional Rail Commission Meteorological Stations Used in Health Risk Assessment Modeling

ΑΞϹΟΜ

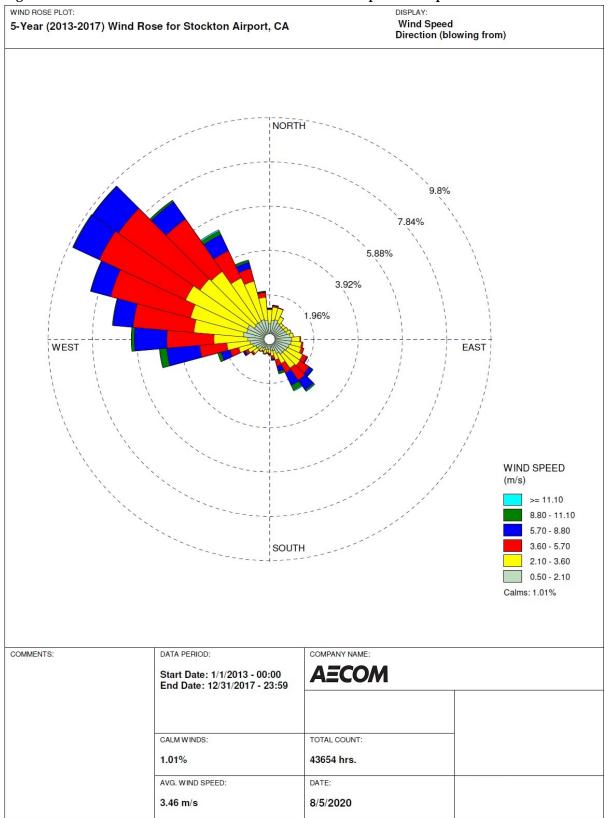
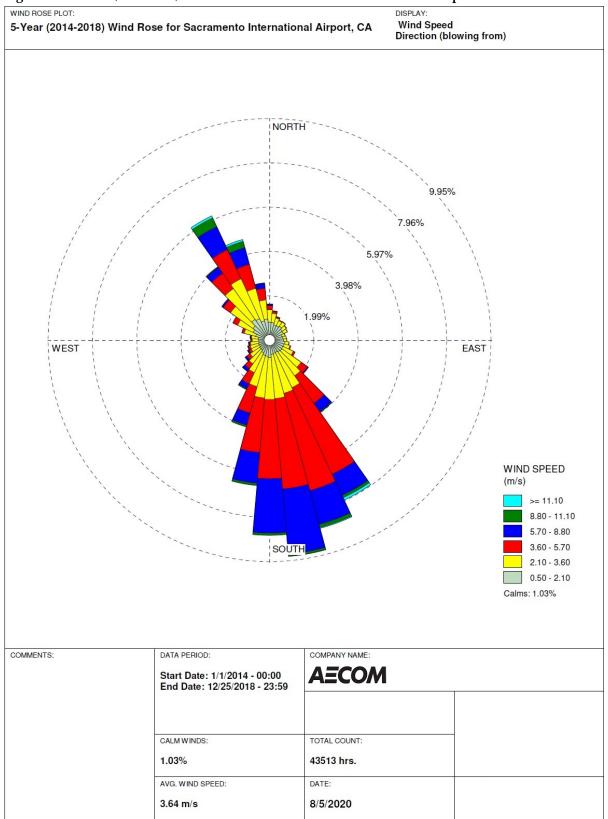
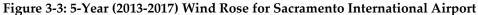




Figure 3-2: 5-Year (2013-2017) Wind Rose for Stockton Metropolitan Airport

WRPLOT View - Lakes Environmental Software

ΑΞϹΟΜ

WRPLOT View - Lakes Environmental Software

ΑΞϹΟΜ

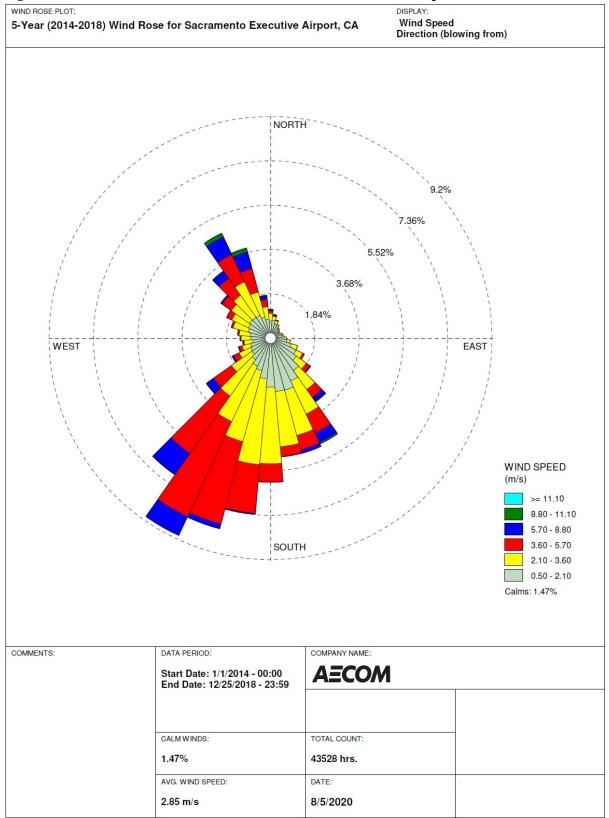


Figure 3-4: 5-Year (2013-2017) Wind Rose for Sacramento Executive Airport

WRPLOT View - Lakes Environmental Software

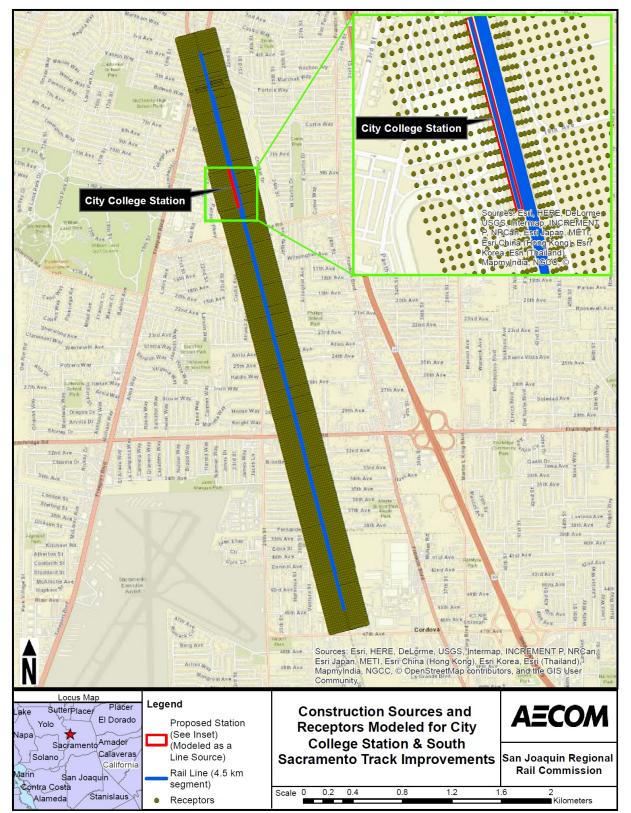


Figure 3-5: Receptor Grid and Sources Modeled for the Construction of City College Station and Track Improvements

3.3. Construction Sources

Construction of the rail stations were represented by adjacent volume sources in the model. These adjacent volume sources were placed over the proposed project site footprint where structures or parking areas would be developed. The South Coast Air Quality Management District (SCAQMD, 2008) provides detailed guidance on lateral dimensions and release height for adjacent volume sources used for construction activities. Consistent with this guidance, the release height of these sources was set to 16.4 feet (5 meters) and an initial vertical dimension of 4.59 feet (1.4 meters). The lateral dimension of each volume source depended on the size of the construction area. For areas greater than 5 acres, the lateral dimension was set to 65.62 feet (20 meters). For areas less than 5 acres, the lateral dimension was set to 32.81 feet (10 meters). Figures showing the location of the proposed stations with the adjacent volume sources are provided for each modeled site in **Attachment A (Figures A-1** through **A-8**).

For the source characterization along-track improvements (i.e. siding upgrades and extensions), the guidance is slightly different between SJVAPCD and SMAQMD. As a result, sources representing track improvements were tailored to the respective air district guidance for each specific location. Lodi and Thornton are located within SJVAPCD. Sites within SMAQMD receiving track improvements include North Elk Grove, South Sacramento, and Del Paso. Site-specific details are provided in the following subsections.

Construction for both stations and track improvement activities are anticipated to occur Monday through Friday from 7 a.m. to 5 p.m. Occasional night-time (5 p.m. to 7 a.m.) and weekend construction activities are possible. To account for this night-time and weekend work, 10% of normal weekday, daytime activity was assumed. The AERMOD EMISFACT (emission factor) hour-day-of-week (HRDOW) keyword was used to mimic this construction hour schedule.

3.3.1. LODI SIDING

The track siding improvement activity in the vicinity to the proposed Lodi Station was represented by adjacent line volume sources. This activity is along a single track for a total length of approximately 3.7 miles (6 km). The lateral dimension of each volume source was 29.9 feet (9.1 meters), which considers 10.2 feet (3.1 meters) for the track width and 9.84 feet (3 meters) on either side of the track to account for turbulent wake affects, consistent with SJVAPCD guidance. Since the construction equipment would be similar is nature to that used for the stations, an initial vertical dimension of 4.59 feet (1.4 meters) was used. The length of the adjacent volume line source equaled the length of the proposed section of track improvements, which is approximately 3.7 miles (6 km). **Figure A-1** (**Attachment A of this Health Risk Assessment**) shows the placement of these adjacent volume sources. Total siding emissions were divided among the total number of volumes, which adequately accounts for the increased emissions in those areas with multiple tracks (refer to **Table A-1**).

3.3.2. THORNTON SIDING

The track siding improvement activity at Thornton was represented by adjacent line volume sources. This activity is along a single track for a total length of approximately 2.1 miles (3.3 km). The lateral dimension of each volume source was 29.9 feet (9.1 meters), which considers 10.2 feet (3.1 meters) for the track width and 9.84 feet (3 meters) on either side of the track to account for turbulent wake affects, consistent with SJVAPCD guidance. Since the construction equipment would be similar is nature to that used for the stations, an initial vertical dimension of 4.59 feet (1.4 meters) was used. The length of the adjacent volume line source equaled the length of the proposed section of track improvements, which is approximately 2.1 miles (3.3 km). **Figure A-2** shows the placement of these adjacent volume sources. Total siding emissions

were divided among the total number of volumes, which adequately accounts for the increased emissions in those areas with multiple tracks (refer to **Table A-2**).

3.3.3. SOUTH SACRAMENTO SIDING

The siding activity at South Sacramento is along a single track extending for a total length of 2.86 miles (4.6 km). Siding along a second track will cover 2.5 miles (4 km) of the 2.86-mile length. Siding activity along an additional 2 tracks will take place in the vicinity of the proposed College City station and platform for a total of 4 tracks in that area. The lateral dimension of each volume source at these locations was 9.84 feet (3 meters). A 6.56-foot (2 meter) gap was added for Del Paso since two tracks exist and SMAQMD guidance recommends adding a 6.56-foot distance to the track widths for modeling. An initial vertical dimension of 4.59 feet (1.4 meters) was used, consistent with the sources modeled in SJVAPCD. The length of the adjacent volume line source equaled the length of the proposed section of track improvements, which varied from location. **Figure A-4** shows the placement of these adjacent volume sources. Total siding emissions were divided among the total number of volumes, which adequately accounts for the increased emissions in those areas with multiple tracks (refer to **Table A-4**).

3.3.4. DEL PASO SIDING

The track improvements at the Del Paso site is along a single track extending for a total length of approximately 4.2 miles (6.7 km). The siding activity is almost exclusively adjacent or north of the proposed Old North Station, with the exception of approximately 426 feet (130 m) of track to the south. A 6.56-foot (2 meter) gap was added for Del Paso since two tracks exist and SMAQMD guidance recommends adding a 6.56-foot distance to the track widths for modeling. An initial vertical dimension of 4.59 feet (1.4 meters) was used, consistent with the sources modeled in SJVAPCD. The length of the adjacent volume line source equaled the length of the proposed section of track improvements, which was 4.2 miles for Del Paso. **Figure A-7** shows the placement of these adjacent volume sources. Total siding emissions were divided among the total number of volumes, which adequately accounts for the increased emissions in those areas with multiple tracks (refer to **Table A-6**).

3.4. Operational Sources

Operational emission sources evaluated in this dispersion modeling included passenger train activities, such as locomotive movement and idling and connecting shuttle service. Operational emissions were modeled as adjacent line volume sources along a 1.24-mile (2 km) segment along the rail line. For sites that involved the construction of a new rail station, the center of the 1.24-mile segment was centered at the station (meaning 0.62 miles (1 km) extended to the north and south of the station). This approach is consistent with the ACE Extension Lathrop to Ceres/Merced EIR health risk analysis (SJRRC 2018, Section 4.3). For sites that did not include a new station (Thornton and Existing Railroad Realignment), a 1.24-mile (2 km) segment was modeled.

As previously discussed in Section 3.3, guidance on source parameterization of rail line sources differs slightly between SJVAPCD and SMAQMD. These have been applied in a similar manner for the operations emissions associated with the locomotives. Figures of the operational 1.24-mile (2-km) track segments are provided in **Attachment A (Figures A-9** through **A-16)** along with **Tables A-8** through **A-15** summarizing the adjacent line volume sources used to represent these emissions.

Operational emissions are almost entirely comprised of exhaust from the locomotives traveling along the proposed project rail line. Throughout a trip, the speed of the train would vary (i.e. travel faster between stations and travel slow or idle at or in the vicinity of stations). As part of a supplemental analysis of TAC

impacts from Caltrain sources prepared by Illingworth and Rodkin, Inc. (Illingworth & Rodkin, 2017) for a Health Risk Assessment in Redwood City, CA, train speed was factored into the emission calculation. Similarly, the consideration of train speed was applied for this proposed project. Within approximately 0.75 miles (1,200 meters) of any station, train speed was assumed to be slower and would be assigned the low-speed train emission rate (as discussed in Section 2). For the 0.25-mile (400 meter) track segments beyond the 0.75-mile segment, train speed was assumed to be higher and assigned the high-speed train emission rate (as discussed in Section 2).

The only non-locomotive exhaust emission source for operations are the shuttle buses that would connect travelers between the Natomas/Sacramento Airport Station and the airport. This source was represented as an adjacent line volume source in the model with a total length of approximately 3.2 miles (5.1 km). The route modeled from the rail station access road, located off West Elkhorn Boulevard, then west along West Elkhorn Boulevard to State Route 99. The lateral dimension of each volume source was 12 feet (3.65 meters), which is equal to the width of the roadway. An initial vertical dimension of 10.5 feet (3.2 meters) was used. **Table A-15** summarizes the volume source parameters for the shuttle bus source.

4. Health Risk Analysis Methodology

4.1. Pollutant Concentrations

Emissions from the sources described in Sections 3.3 and 3.4 were run in AERMOD to determine air pollutant concentrations at sensitive receptor locations. AERMOD was run using unit emissions. Each source was modeled assuming emissions of 1 gram per second (g/s) divided by the number of volume sources in a rail line segment, or 1 g/s divided by the number of adjacent sources within a station construction area. The unitized AERMOD results for each source are output in $\mu g/m^3 \text{ per g/s }[(\mu g/m^3)(g/s)^{-1}]$. Maximum hourly and period-average plot files generated by AERMOD as described above were input to HARP2⁶ with corresponding toxic air contaminant emission rates for construction as well as the project operational emissions to calculate project pollutant concentration contributions. These concentrations were then used to estimate the long-term effects of toxic air contaminants on nearby existing sensitive receptor locations.

4.2. Receptor Exposure and Health Risk Calculations

Exposure factors were used to calculate the dose associated with exposure to the estimated unit concentration results obtained using AERMOD. California Air Resources Board created the HARP2 software to assist in the development of emissions inventories, dispersion modeling, and risk assessment. For this project, HARP2 was used solely to estimate cancer risk via HARP2's Air Dispersion Modeling and Risk Tool (ADMRT), Version 19121; ADMRT was developed to encapsulate the exposure factors and guidance of the 2015 OEHHA Health Risk Assessment (OEHHA, 2015). AECOM evaluated the probability of contracting cancer over 30 years for resident receptors through the inhalation, soil ingestion, mother's milk, and homegrown produce pathways, using the OEHHA-Derived Method. The 1-year or less construction period of each project site was also evaluated for cancer risk for the existing nearby sensitive receptors.

Factors that affect the dose that a receptor would receive include but are not limited to age-specific daily breathing rates as well as exposure time, frequencies, and duration. The general formula for calculating residential inhalation risk is as follows:

 $RISK_{inh-res} = DOSE_{air} \times CPF \times ASF \times ED/AT \times FAH$

Where:	
RISK inh-res	= Residential inhalation cancer risk
DOSE _{air}	= Daily inhalation dose (milligrams/kilogram [mg/kg]-day)
CPF	= Inhalation cancer potency factor (mg/kg-day-1)
ASF	= Age sensitivity factor for a specified age group (unitless)
ED	= Exposure duration (in years) for a specified age group

⁶ The Hotspots Analysis and Reporting Program (HARP) is a software suite that addresses the programmatic requirement of the Air Toxics "Hot Spots" Program (Assembly Bill 2588). HARP incorporates the information presented in the 2015 Air Toxics Hotspots Program Guidance Manual.

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless)

The inhalation risk was calculated in HARP2 using the OEHHA 2015 recommended default values for these parameters:

CPF	= Substance-specific
ASF	= 10 for 3rd trimester of pregnancy to age 2, 3 for age 2 to 16, 1 for age 16 to 30
ED	= 0.25 years for 3rd trimester, 2 years for age 0 to 2,
AT	= 70 years (for sites within SJVAPCD) and 30 years (for sites within SMAQMD)
FAH	= 1.0 (no adjustment)

The daily inhalation dose is defined as:

 $DOSE_{air} = C_{air} \times \{BR/BW\} \times A \times EF \times 10^{-6}$

Where:

DOSEair	= Dose through inhalation (mg/kg-day)
Cair	= Concentration in air ($\mu g/m^3$)
{BR/BW}	= Daily Breathing rate normalized to body weight (Liters/kilogram body weight - day)
А	= Inhalation absorption factor (unitless)
EF	= Exposure frequency (unitless), days/365 days
10-6	= Micrograms to milligrams conversion, liters to cubic meters conversion

The daily inhalation dose is calculated in HARP2 using OEHHA 2015 recommended default values for these parameters:

- C_{air} = Concentration as calculated from AERMOD
- {BR/BW} = RMP derived method (i.e., 95th percentile) estimates (361 for 3rd trimester of pregnancy, 1090 for age 0 to 2, 745 for age 2 to 16, 335 for age 16 to 30)
- A = 1
- EF = 0.96 (350 days/365 days in a year for a resident)

4.3. Health Risk Thresholds for SMAQMD

The SMAQMD does not recommend any particular health risk or concentration-based thresholds and instead defers to the local jurisdiction to determine appropriate risk levels. However, the neighboring air district, the Bay Area Air Quality Management District (BAAQMD, 2012), does recommend project-specific and cumulative cancer risk thresholds of 10 and 100 in a million, respectively. A chronic non-cancer Hazard Index of less than 1.0 is also recommended. Therefore, the health risks for excess cancer and chronic non-cancer associated with construction and operations of the proposed project that would take place within the SMAQMD jurisdictional boundary were compared against the BAAQMD thresholds for construction and operation phases separately.

SMAQMD has developed the MSAT Protocol as guidance to local land use jurisdictions for assessing and disclosing potential cancer risk and PM_{2.5} concentrations from major roadways and railways. The MSAT Protocol includes a risk mapping tool, guidance document, and detailed methodology document. The mapping tool does not reflect existing features on or adjacent to the location of interest that may reduce reported risk such as barriers, vegetative plantings, or enhanced indoor air filtration. **Table 4-1** presents a range of the modeled potential increase in cancer risk due to major roadways and railways at the modeling locations along the proposed project alignment using the MSAT risk mapping tool. Existing potential cancer risk values at the maximum project-only location would then be added to the project-only results and compared against the 100 in a million cumulative cancer risk threshold.

Modeling Site	Range of Existing Potential Cancer Risk Along Track Segment (in a million) ^{1,2}	
Track Curve Reconstruction North of Elk Grove	2 – 3	
City College and South Sacramento Track Improvements	30 – 55	
Existing Railroad Realignment	50 – 165	
Midtown Station	35 – 165	
Old North Sacramento Station ³	4 - 30	
Natomas/Sacramento Airport Station	2 - 36	

Table 4-1: Existing Potential Cancer Risk at Proposed Project Modeling Sites within SMAQMD

¹ Cancer risk obtained using the SMAQMD MSAT Protocol risk mapping tool. Data retrieved September 2020.

² A range of values obtained from the SMAQMD MSAT Protocol risk mapping tool are provided. These include values from select receptors at points along the 2 km track segments at each modeling site.

4.4. Health Risk Thresholds for SJVAPCD

The SJVAPCD have outlined their health risk assessment thresholds in APR-1906 Framework for Performing Health Risk Assessments (SJVAPCD, 2018). For projects that fall under CEQA, such as the proposed Project, the cancer risk threshold for the project is less than or equal to 20 in a million and the chronic non-cancer Hazard Index threshold is less than 1.0. The Framework guidance document includes a tiered approach for conducting a Health Risk Assessment, which include the following:

- Tier 1 Screening estimate;
- Tier 2 Refined Project Specific Modeling Inputs; and
- Tier 3 Refined Project Specific Exposure Parameters.

For this Health Risk Assessment, the Tier 2 level has been selected, as refined AERMOD inputs that are specific to the project are used.

5. Health Risk Analysis Results

Excess cancer and chronic non-cancer health risks were evaluated for each modeled site for the duration of construction and then a 30-year (sites within SMAQMD) or 70-year (sites within SJVAPCD) exposure period for operations. Given the differences in risk thresholds between the two air districts, results that are presented below are grouped by district.

5.1. Health Risk Results for Sites Located within SJVAPCD – Construction Emissions

The excess cancer risk attributed to construction sources from the Lodi Station and track improvements and Thornton track improvements are listed in **Table 5-1**. The excess cancer risk associated with construction of these project elements would result in maximum excess cancer risk of 2.63 and 0.15 in a million, respectively. Both are below the threshold of 20 in a million. **Table 5-2** provides the chronic non-cancer risk results for the Lodi Station and track improvements and the Thornton track improvements during construction. The maximum chronic non-cancer Hazard Index values would be 0.003 and 0.0003, respectively, both of which fall well below the threshold of 1.0.

Table 5-1: Maximum Excess Cancer Risk at Off-Site Sensitive Receptors for Construction Sites within SJVAPCD

Site	Year	Years of Age	Maximum Excess Cancer Risk (in a million) ¹	Significance Threshold (in a million) ²	Exceeds Threshold?		
Lodi Station/Track	2021	Third	2.63	20	No		
Improvements	2021	Trimester to 1	2.03	20	110		
Thornton Track	2021	Third	0.15	20	No		
Improvements	2021	Trimester to 1	0.15	20	No		
	1. Values rounded to the nearest hundredth.						

2. APR-1906 Framework for Performing Health Risk Assessments (SJVAPCD, 2018).

Table 5-2: Maximum Chronic Non-Cancer Hazard Index at Off-Site Sensitive Receptors for Construction Sites within SJVAPCD

Site	Maximum Chronic Non-Cancer Hazard Index ¹	Significance Threshold ²	Exceeds Threshold?		
Lodi Station/Track Improvements	0.0030	1.0	No		
Thornton Track Improvements	0.0003	1.0	No		
1. Values rounded to the nearest thousandth. 2. APR-1906 Framework for Performing Health Risk Assessments (SJVAPCD, 2018).					

5.2. Health Risk Results for Sites Located within SJVAPCD – Operational Emissions

The excess cancer risk attributed to railway operational sources (i.e. locomotives) within 1 km north and south of Lodi Station, Thornton and Stockton ACE Station are provided in **Table 5-3**. The excess cancer risk

associated with operations for a 70-year period at each of these sites would result in maximum excess cancer risk of 3.63 (Lodi), 3.30 (Thornton), and 3.37 (Stockton). All three sites are below the threshold of 20 in a million. **Table 5-4** provides the chronic non-cancer risk results for these three sites during operations. The maximum chronic non-cancer Hazard Index values at Lodi Station, Thornton and Stockton would be all be 0.001 and well below the threshold of 1.0.

Table 5-3: Maximum Excess Cancer Risk at Off-Site Sensitive Receptors for Operations within
SJVAPCD

Site	Years of Age	Maximum Excess Cancer Risk (in a million) ¹	Significance Threshold (in a million) ²	Exceeds Threshold?	
Lodi Station	Third Trimester to 70 (70 years)	3.62	20	No	
Thornton	Third Trimester to 70 (70 years)	3.37	20	No	
Stockton ACE Station	Third Trimester to 70 (70 years)	3.27	20	No	
 Values rounded to the nearest hundredth. APR-1906 Framework for Performing Health Risk Assessments (SIVAPCD, 2018). 					

Table 5-4: Maximum Chronic Non-Cancer Hazard Index at Off-Site Sensitive Receptors for Operations within SJVAPCD

Site	Maximum Chronic Non- Cancer Hazard Index1SignificanceThreshold2		Exceeds Threshold?		
Lodi Station	0.001	1.0	No		
Thornton	0.001	1.0	No		
Stockton ACE Station 0.001 1.0 No					
 Values rounded to the nearest thousandth. APR-1906 Framework for Performing Health Risk Assessments (SJVAPCD, 2018). 					

5.3. Health Risk Results for Sites Located within SMAQMD – Construction Emissions

The excess cancer risk attributed to construction sources from the North Elk Grove, City College, Midtown, Old North, Del Paso, and Natomas modeling locations are listed in **Table 5-5**. All sites were found to have excess cancer risk well below the project-specific threshold of 10 in a million, with the highest cancer risk from any of the sites at 3.21 in a million from City College. **Table 5-6** provides the chronic non-cancer risk results for the above listed sites during construction. The maximum chronic non-cancer Hazard Index values across all sites was 0.004 at City College and Natomas. Therefore, all sites fall well below the chronic non-cancer threshold of 1.0.

Table 5-5: Maximum Excess Cancer Risk at Off-Site Sensitive Receptors for Construction Sites within SMAQMD

Site	Year	Years of Age	Maximum Excess Cancer Risk (in a million) ¹	Significance Threshold ²	Exceeds Threshold?
Track Curve Reconstruction North of Elk Grove	2021	Third Trimester to 1	0.95	10	No
City College and South Sacramento Track Improvements	2023	Third Trimester to 1	3.21	10	No
Midtown Station	2021	Third Trimester to 1	2.50	10	No
Old North Sacramento Station	2021	Third Trimester to 1	2.46	10	No
Del Paso Track Improvements	2023	Third Trimester to 1	0.37	10	No
Natomas/Sacramento Airport Station	2021	Third Trimester to 1	3.13	10	No
 Values rounded to the neares BAAQMD, 2017. 	st hundredth				

Table 5-6: Maximum Chronic Non-Cancer Risk at Off-Site Sensitive Receptors for Construction Sites within SJVAPCD

Site	Maximum Chronic Non- Cancer Hazard Index ¹	Significance Threshold ²	Exceeds Threshold?
Track Curve Reconstruction North of Elk Grove	0.001	1.0	No
City College and South Sacramento Track Improvements	0.004	1.0	No
Midtown Station	0.003	1.0	No
Old North Sacramento Station	0.003	1.0	No
Del Paso Track Improvements	< 0.001	1.0	No
Natomas/Sacramento Airport Station	0.004	1.0	No
 Values rounded to the nearest hundred BAAQMD, 2017. 	th.		

5.4. Health Risk Results for Sites Located within SMAQMD – Operational Emissions

The excess cancer risk attributed to railway operational sources (i.e. locomotives) within 2 km of the sites of the proposed project within SMAQMD are provided in **Table 5-7**. The excess cancer risk associated with

operations for a 30-year period at each of these sites would result in highest maximum excess cancer risk for any of the sites to be 6.94 in a million (at the Existing Railroad Realignment). All sites are below the project-specific threshold of 10 in a million. **Table 5-8** provides the chronic non-cancer risk results for these same sites during operations. The maximum chronic non-cancer risk value would all be 0.002 or less, and well below the threshold of 1.0.

Table 5-7: Maximum Excess Cancer Risk at Off-Site Sensitive Receptors for Operations within
SMAQMD

Site	Years of Age	Maximum Excess Cancer Risk (in a million) ¹	Significance Threshold ²	Exceeds Threshold?	
North Elk Grove Track Curve	Third Trimester to 30 (30 years)	5.77	10	No	
City College and South Sacramento Track Improvements	Third Trimester to 30 (30 years)	4.63	10	No	
Existing Railroad Realignment	Third Trimester to 30 (30 years)	6.94	10	No	
Midtown Station	Third Trimester to 30 (30 years)	4.48	10	No	
Old North Sacramento Station ³	Third Trimester to 30 (30 years)	5.18	10	No	
Natomas/SacramentoThird Trimester to 30Airport Station(30 years)		4.76	10	No	
 Values rounded to the nearest hundredth. BAAQMD, 2017. Includes track segments associated with Del Paso track improvements. 					

Table 5-8: Maximum Chronic Non-Cancer Hazard Index at Off-Site Sensitive Receptors for Operations within SMAQMD

Site	Maximum Chronic Non-Cancer Hazard Index ¹	Significance Threshold ²	Exceeds Threshold?			
North Elk Grove Track Curve	0.001	1.0	No			
City College and South Sacramento Track Improvements	0.001	1.0	No			
Existing Railroad Realignment	0.002	1.0	No			
Midtown Station	0.001	1.0	No			
Old North Sacramento Station ³	0.001	1.0	No			
Natomas/Sacramento Airport Station	0.001	1.0	No			
 Values rounded to the nearest thousandth. BAAQMD, 2017. Includes track segments associated with Del 	1. Values rounded to the nearest thousandth. 2. BAAQMD, 2017.					

In conjunction with the MSAT Protocol, SMAQMD developed an internet-based mapping tool that discloses localized cancer risk and PM_{2.5} levels in proximity to high-volume roadways and rail within Sacramento County. This mapping data has been used to inform this analysis of the potential existing health risks in the vicinity of the proposed project and consider the proposed project's relative contribution to excess health risks at sensitive receptors. The sum of the project-specific (**Table 5-7**) and existing potential cancer risk values at the maximum project-specific receptor, at each modeling site within Sacramento County are summarized in **Table 5-9**.

As shown in **Table 5-9**, the existing health risk at all maximum project-only locations is less than 100 in a million; however, as noted in Table 4-1, areas of the project alignment near the Existing Railroad Realignment and Midtown Sacramento stations already exceed the 100 in a million risk level recommended threshold of the neighboring BAAQMD prior to the addition of the project. Contributing sources of DPM and Total Organic Gasses (TOG) at these locations include the existing rail activity, as well as vehicles along the nearby roadways. Operations of the proposed Project would use engines that meet or exceed Tier 4 emissions standards, the most stringent standards under current regulations. In addition, it is expected to result in a transportation mode shift (i.e., attract passengers who otherwise would have driven cars) that would reduce travel by highway vehicles, reducing mobile source emissions and congestion. Reduced congestion would also serve to reduce the emissions associated with on-road trucks that emit DPM and contribute to the existing health risks.

Table 5-9: Maximum Excess Cancer Risk at Off-Site Sensitive Receptors for Operations within SMAQMD

Modeling Scenario	Years of Age	Existing Potential Cancer Risk (in a million) ^{1,2}	Maximum Project Excess Cancer Risk (in a million) ^{1,3}	Maximum Cumulative Excess Cancer Risk (in a million) ¹	Significance Threshold ⁴	Exceeds Threshold?
North Elk Grove Curve	Third Trimester to 30 (30 years)	2.1	5.77	7.87	100	No
City College and South Sacramento Track Improvements	Third Trimester to 30 (30 years)	31	4.63	35.63	100	No
Existing Railroad Realignment	Third Trimester to 30 (30 years)	64	6.94	71.94	100	No
Midtown Station	Third Trimester to 30 (30 years)	47	4.48	51.48	100	No
Old North Sacramento Station ⁵	Third Trimester to 30 (30 years)	8.6	5.18	13.78	100	No
Natomas/Sacramento Airport Station	Third Trimester to 30 (30 years)	7.3	4.76	12.06	100	No

1. Values rounded to the nearest hundredth.

2. Values equal to the existing potential cancer risk at the maximum receptor location of the project-only maximum excess cancer risk obtained by using the SMAQMD MSAT Air Toxics Protocol tool.

3. Values equal to the sum of cancer risk from Table 5-7.

4. BAAQMD, 2017.

5. Includes track segments associated with Del Paso track improvements.

6. Uncertainties

In accordance with risk assessment guidance, the following discussion summarizes the main uncertainties associated with the emissions estimation, air dispersion modeling, and risk estimation components of the Health Risk Assessment methodology.

6.1. Emissions Estimates

Uncertainties exist in estimating emissions from construction equipment. Where project-specific data were not available, CalEEMod default values or conservative input assumptions were used. It is anticipated that the intensity and duration of equipment used during construction would more likely be less than estimated. In addition, emission factors used were for a 2021 fleet mix; any construction in future years would more realistically result in fewer emissions for the same level of activity due to fleet turnover over time, in which older equipment and vehicles are replaced by those with new engines meeting more recent and more stringent emission standards.

6.2. Air Dispersion Modeling

In addition to the uncertainty associated with emission estimates, uncertainty exists regarding the pollutant concentrations estimated by the air dispersion model. The limitations of the air dispersion model provide a source of uncertainty in the estimation of exposure concentrations. According to the U.S. EPA Appendix W, errors attributable to the limitation of the algorithms implemented in the air dispersion model in the highest estimated concentrations of +/- 10 percent to 40 percent are typical. The health risk methodologies use conservative assumptions and techniques to produce conservative results; thus, predicted exposure concentrations are likely to be at or above actual exposure concentrations.

The source parameters used to model emission sources add uncertainty. For all emission sources, source parameters were used that are either recommended as defaults or expected to produce more conservative (worst-case) results. Discrepancies might exist between the actual emissions characteristics of a source and its representation in the model; exposure concentrations used in this assessment represent approximate exposure concentrations.

6.3. Health Risk Analysis

Numerous assumptions must be made to estimate human exposure to pollutants. These assumptions include parameters such as breathing rates, exposure time and frequency, exposure duration, and human activity patterns. While a mean value derived from scientifically defensible studies is the best estimate of central tendency, most exposure variables used in this Health Risk Assessment are high-end estimates. For example, it is assumed that residential receptors would be exposed to project emissions during the entire construction duration. This assumption is conservative because most residents do not remain in their homes for this period of time. The combination of several high-end estimates used as exposure parameters may substantially overestimate chemical intake. The excess lifetime cancer risks calculated in this assessment are therefore likely to be higher than may be required to be protective of public health. Generally, the concentrations and health risk decrease substantially as the distance between the source and receptor increases.

The OEHHA Cancer Potency Factor (CPF) for diesel PM is used to estimate cancer risks associated with exposure to diesel PM from project emissions. However, the CPF derived by OEHHA for diesel PM is highly uncertain in the estimation of both response and dose. In the past, because of inadequate animal test

data and epidemiology data on diesel exhaust, the International Agency for Research on Cancer, a branch of the World Health Organization, had classified diesel PM as Probably Carcinogenic to Humans (Group 2); U.S. EPA had also concluded that the existing data did not provide an adequate basis for quantitative risk assessment.⁷ However, based on two recent scientific studies,^{8,9} International Agency for Research on Cancer recently reclassified diesel PM as Carcinogenic to Humans (Group 1),¹⁰ which means that the agency has determined that there is "sufficient evidence of carcinogenicity" of a substance in humans and represents the strongest weight-of-evidence rating in International Agency for Research on Cancer sciencing classification scheme. This determination by International Agency for Research on Cancer may provide additional impetus for the U.S. EPA to identify a quantitative dose/response relationship between exposure to diesel PM and cancer.

Project-specific PM₁₀ emissions and PM₁₀ emissions from the MSAT mapping tool both assume total PM₁₀ equals total DPM from diesel-fueled equipment (including locomotives). While almost all DPM from diesel exhaust is within the range of PM_{2.5} (fine particle diameter of 2.5 microns or less), this is considered a conservative estimate to provide health-protective risk. In addition, the MSAT mapping tool does not reflect existing features on or adjacent to the location of interest that may reduce reported risk such as barriers, tree plantings, or enhanced indoor air filtration. The Sacramento Air District funded a study (CAPCOA, 2009) that indicates that trees and other vegetation have been shown to alter pollutant transport and dispersion, reducing pollutant concentrations by 65-85 percent on the leeward side of a tree line. As such, there may be a benefit of reduced pollutant concentrations at sensitive receptor locations due to the proposed landscaping. However, this reduction is not quantifiable and therefore has not been taken into consideration for the modeling results presented in this HRA.

OEHHA 2015 notes that the conservative assumptions used in a risk assessment are intended to avoid underestimation of actual risks posed by a site, and are designed to err on the side of health protection. The estimated risks in this Health Risk Assessment are based primarily on a series of conservative assumptions related to predicted environmental concentrations, exposure, and chemical toxicity. The use of conservative assumptions tends to produce upper-bound estimates of risk. Although it is difficult to quantify the uncertainties associated with all the assumptions made in this risk assessment, the use of conservative assumptions is likely to result in substantial overestimates of exposure and, hence, risk.

⁷ U.S. EPA. 2002 (May). Health Assessment Document for Diesel Engine Exhaust. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. EPA/600/8-90/057F.

⁸ Benbrahim-Tallaa, L. et al. 2012. Carcinogenicity of Diesel-engine and Gasoline-engine Exhausts and Some Nitroarenes, Lancet Oncology. July 2012.

⁹ Attfield MD, Schleiff PL, Lubin JH, Blair A, Stewart PA, Vermeulen R, Coble JOB, Silverman DT. 2012. The Diesel Exhaust in Miners Study: A Nested Case-Control Study of Lung Cancer and Diesel Exhaust. J Natl Cancer Inst.

¹⁰ International Agency for Research on Cancer (IARC). 2012. Press Release No. 213. IARC: Diesel Engine Exhaust Carcinogenic. June.

7. References

- Attfield, M.D., P. L. Schleiff, J. H. Lubin, A. Blair, P. A. Stewart, R. Vermeulen, J. B. Coble, and D. T. Silverman. 2012. The Diesel Exhaust in Miners Study: A Nested Case-Control Study of Lung Cancer and Diesel Exhaust. *Journal of the National Cancer Institute* 104(11):855–868.
- Bay Area Air Quality Management District (BAAQMD). 2012 (May). Recommended Methods for Screening and Modeling Local Risks and Hazards. Available: http://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/risk-modeling-approach-may-2012.pdf?la=en. Accessed August 2020.
 - ———. 2017 (May). CEQA Air Quality Guidelines. Available: https://www.baaqmd.gov/~/media/files/planning-and-research/ceqa/ceqa_guidelines_may2017pdf.pdf?la=en. Accessed July 2020.
- Benbrahim-Tallaa, L., R. A. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, N. Guha, D. Loomis, and K. Straif. 2012. Carcinogenicity of Diesel-engine and Gasoline-engine Exhausts and Some Nitroarenes, *Lancet Oncology* 13(7):663–664.
- California Air Pollution Control Officers Association (CAPCOA). 2009 (July). Health Risk Assessments for Proposed Land Use Projects.
- California Air Resources Board (ARB). 2017.California Air Resources Board (ARB). 2018 (July). *EMFAC2017 Volume III – Technical Documentation v1.0.2.* <u>https://www.arb.ca.gov/msei/downloads/emfac2017-volume-iii-technical-documentation.pdf</u>
- International Agency for Research on Cancer (IARC). 2012 (June). *IARC: Diesel Engine Exhaust Carcinogenic*. Press Release No. 213.
- Office of Environmental Health Hazard Assessment (OEHHA). 2015 (February). *Air Toxics Hot Spots Program Guidance Manual.*
- Sacramento Metropolitan Air Quality Management District (SMAQMD). 2019 (April). *Guidance* Document for the Mobile Sources Air Toxics Protocol.
- ———. 2020. CEQA Guidance & Tools. Available at: <u>http://www.airquality.org/Residents/CEQA-Land-Use-Planning/CEQA-Guidance-Tools</u>
- San Joaquin Regional Rail Commission (SJRRC). 2018 (April). ACE Extension Lathrop to Ceres/Merced Draft EIR Section 4.3. ICF 00509.17. Available: https://acerail.com/projects-initiatives/.
- South Coast Air Quality Management District (SCAQMD). 2008 (July). Localized Significance Threshold Methodology (Final). Available: http://www.aqmd.gov/docs/defaultsource/ceqa/handbook/localized-significance-thresholds/final-lst-methodology-document.pdf.

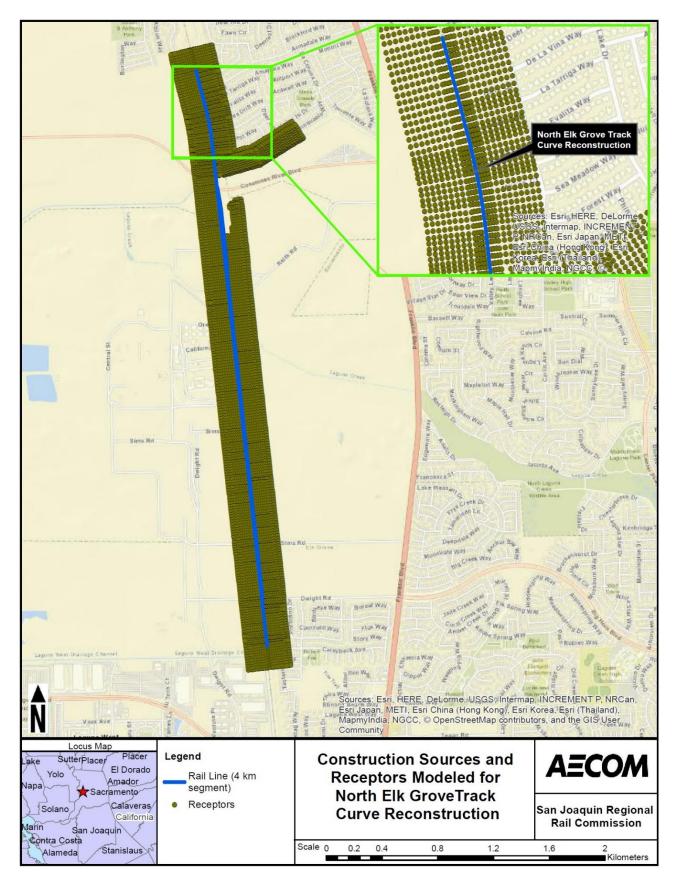
- U.S. Environmental Protection Agency (EPA). 2002 (May). *Health Assessment Document for Diesel Engine Exhaust.* EPA/600/8-90/057F. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.
- . 2009 (April). Emission Factor for Locomotives. EPA-420-F-09-025.
- ———. 2017. Guideline on Air Quality Models (Revised). 40 Code of Federal Regulations, Part 51, Appendix W. Office of Air Quality Planning and Standards. January.

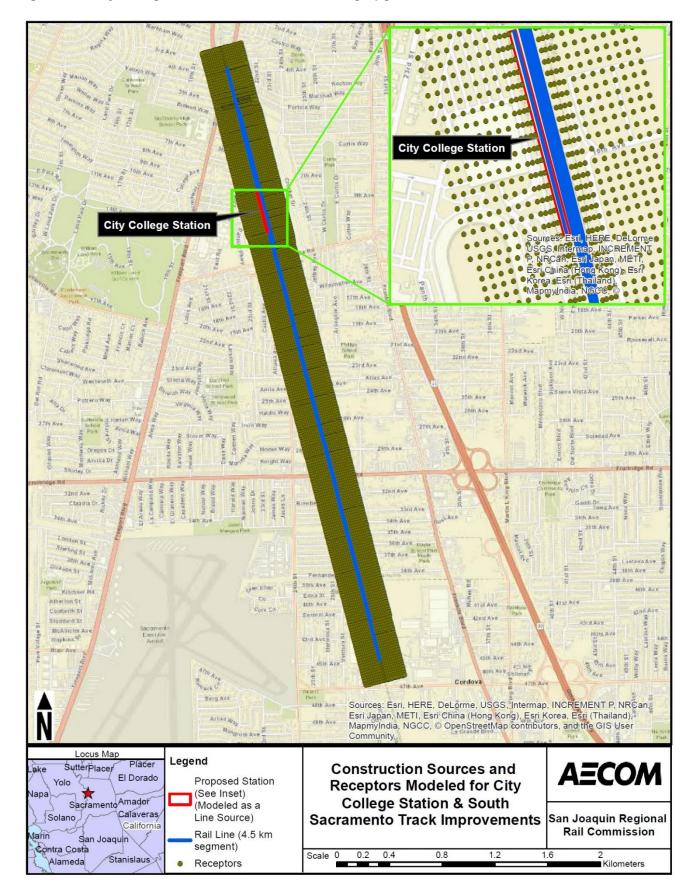
ATTACHMENT A

Figures showing construction and operational emission sources at each site modeled along with placement of receptors for the Valley Rail Sacramento Extension Project. Tables summarizing the emissions to be allocated at each volume source are also provided in this attachment to the HRA.

CONSTRUCTION SCENARIOS

Figure A-1: Lodi Station





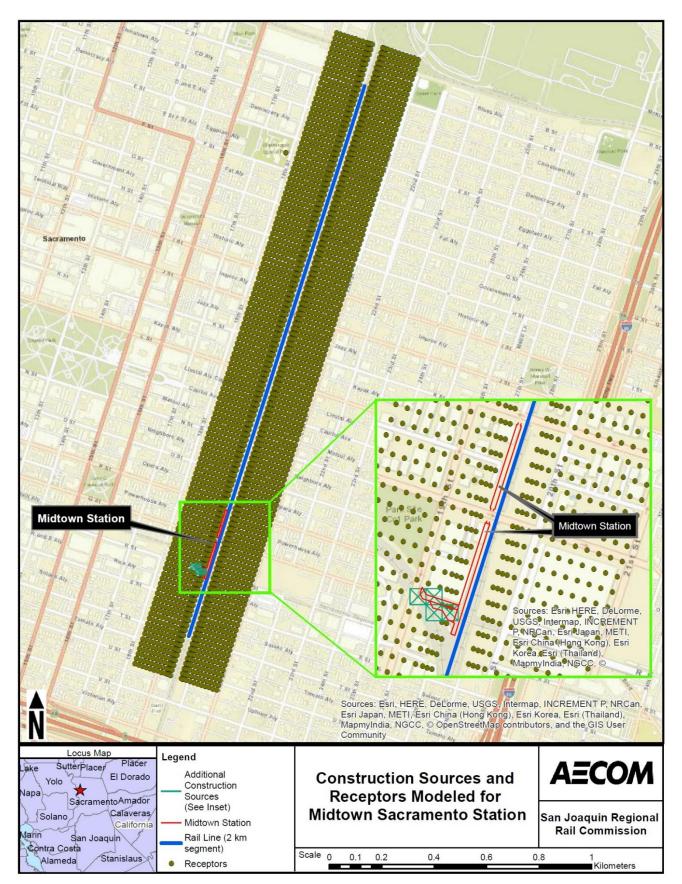


Figure A-4: City College and South Sacramento Siding Upgrade

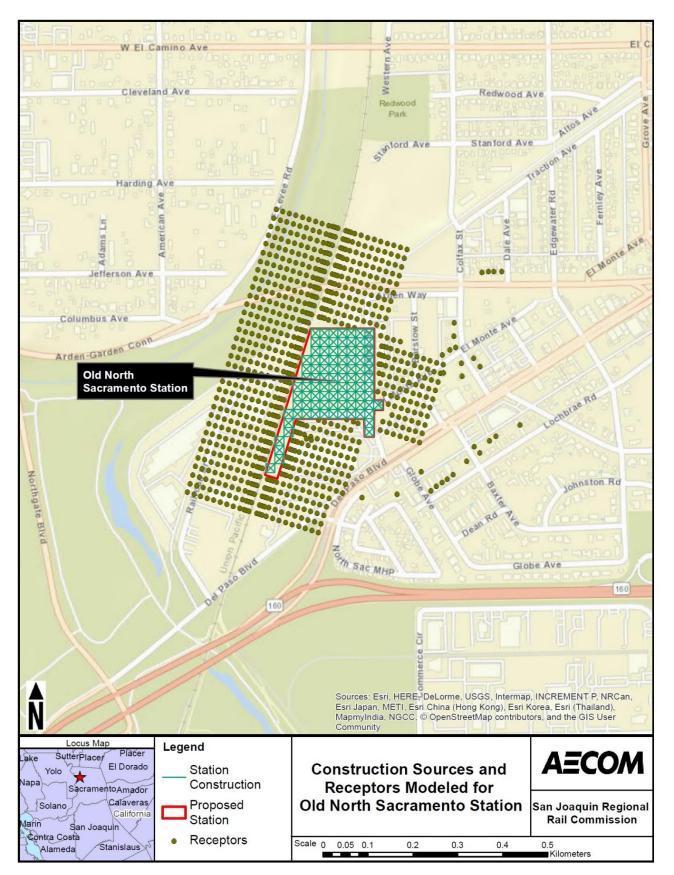


Figure A-6: Old North Sacramento Station

Figure A-7: Del Paso Siding Upgrade and Extension

Table A-1: Lodi Station & Track Construction Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]		
Construction at Station ¹	76	1.31579E-02	20	5	4.651	1.40		
Siding Track ²	661	1.51286E-03	9.1	5	4.23	1.40		
 Notes: g/s/vol = grams per second per number of volume sources. Follows SJVAPCD guidance. Construction site greater than 5 acres; therefore, source width equal to 20 m. Source width accounts for 3 m on each side of track for wake affects and 3.1 m for track width. 								

Table A-2: Thornton Siding Upgrade & Extension Construction Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	Width ¹ [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]		
Siding Track Line 1 ²	336		9.1	5	4.23	1.40		
Siding Track Line 2 ²	132	1.77620E-03	9.1	5	4.23	1.40		
Siding Track Line 3 ²	65		9.1	5	4.23	1.40		
Notes: g/s/vol = grams per second per number of volume sources. Follows SJVAPCD guidance. 1. Source width accounts for 3 m on each side of track for wake affects and 3.1 m for track width.								

Table A-3: Track Curve Reconstruction North of Elk Grove Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]			
Track Reconstruction 110		9.09091E-03	3	5	1.40	1.40			
2. Construction site greater than	Notes: g/s/vol = grams per second per number of volume sources. Follows SMAQMD guidance. 2. Construction site greater than 5 acres; therefore, source width equal to 20 m.								

Table A-4: City College Station & South Sacramento Siding Construction Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]		
Construction at Station ¹	32	3.125E-02	10	5	2.33	1.40		
Track Line 1 ²	1541		3	5	1.40	1.40		
Track Line 2 ²	1306		3	5	1.40	1.40		
Track Line 3 ²	362	2.8169E-04	3	5	1.40	1.40		
Track Line 4 ²	341		3	5	1.40	1.40		
Notes: g/s/vol = grams per second per number of volume sources. Follows SMAQMD guidance.								

1. Construction site less than 5 acres; therefore, source width equal to 10 m.

2. Construction emissions account for both areas of activity, so these are merged in the modeling.

Table A-5: Midtown Sacramento Station Construction Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume ¹ [g/s/vol]	Line Source Plume Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]		
Construction Along Track	4	8.877193E-03	20	5	4.651	1.40		
Construction at Station ²	110	0.077193E-03	20	5	4.651	1.40		
Notes: g/s/vol = grams per second per number of volume sources. Follows SMAQMD guidance. 1. Construction emissions account for both areas of activity, so these are merged in the modeling. 2. Construction site greater than 5 acres; therefore, source width equal to 20 m.								

Table A-6: Old North Sacramento Station & Del Paso Siding Construction Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume ¹ [g/s/vol]	Line Source Plume Width [m]	Track Gap [m]	Total Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Construction at Station ²	90	1.11111E-02	20	-	20	5	4.651	1.40
Del Paso Siding	839	1.19190E-03	6	2	8	5	3.72	1.40
Notes: g/s/vol = grams per second per number of volume sources. Follows SMAQMD guidance. 1. Construction emissions account for both areas of activity, so these are merged in the modeling.								

2. Construction site greater than 5 acres; therefore, source width equal to 20 m.

Table A-7: Natomas/Sacramento International Airport Station Construction Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	Line Source Plume Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]		
Construction at Station ¹	135	7.40741E-03	10	5	2.33	1.40		
Notes: g/s/vol = grams per second per number of volume sources. Follows SMAQMD guidance. 1. Construction site less than 5 acres; therefore, source width equal to 10 m.								

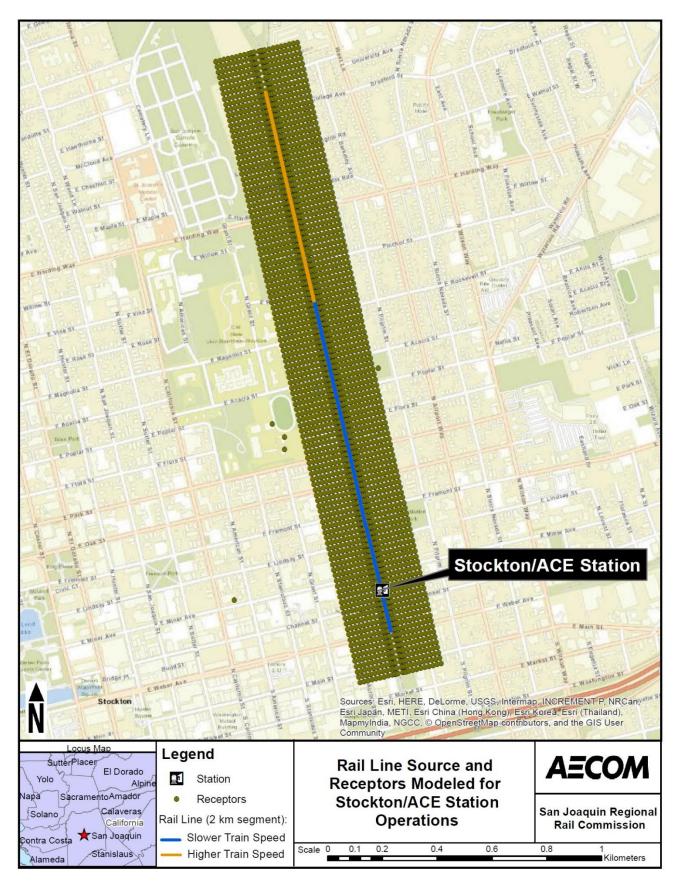

OPERATIONAL SCENARIOS

Figure A-9: Lodi Station

Figure A-10: Stockton Station

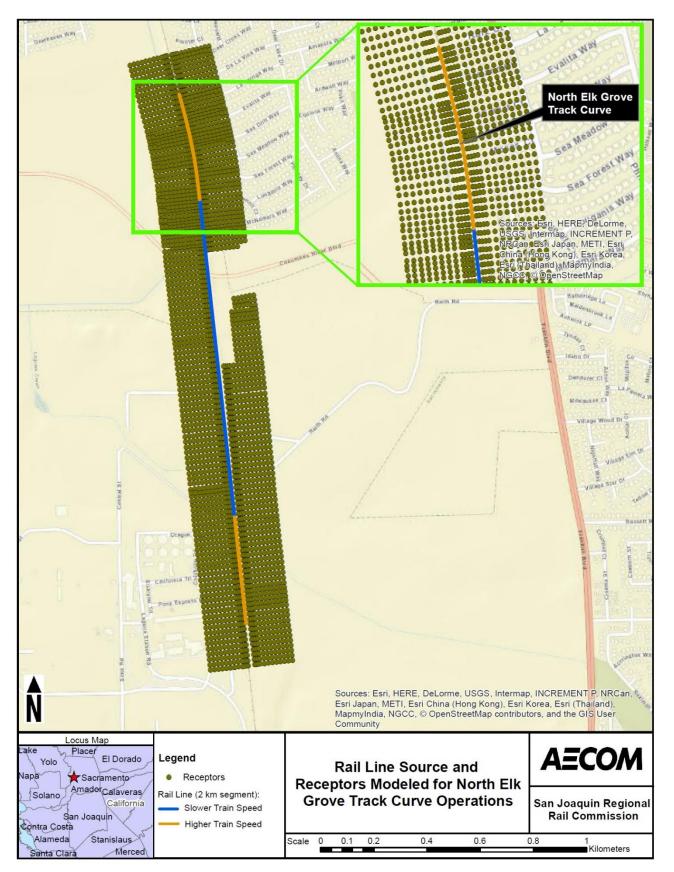


Figure A-11: Thornton

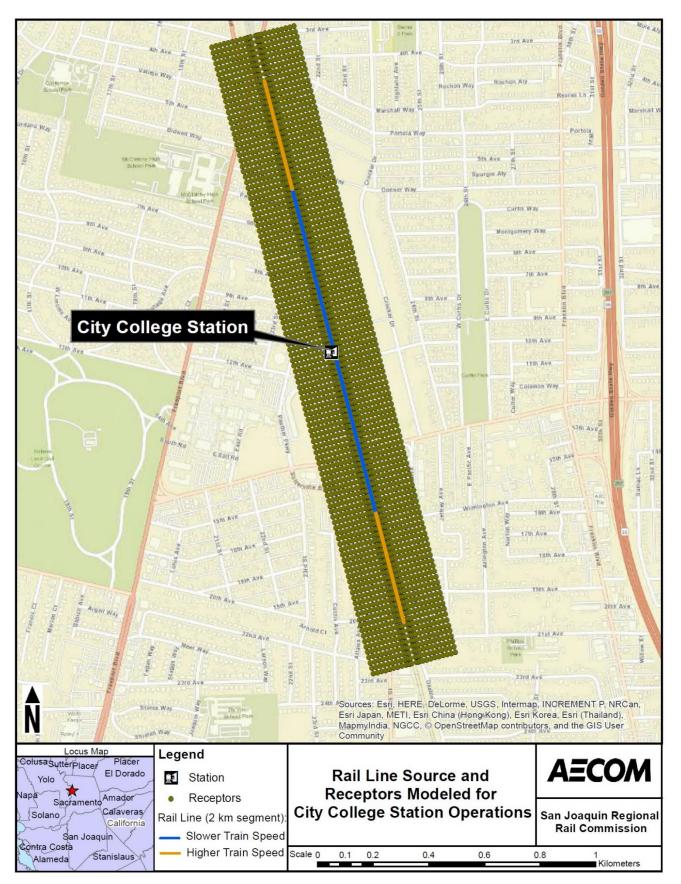


Figure A-12: North of Elk Grove

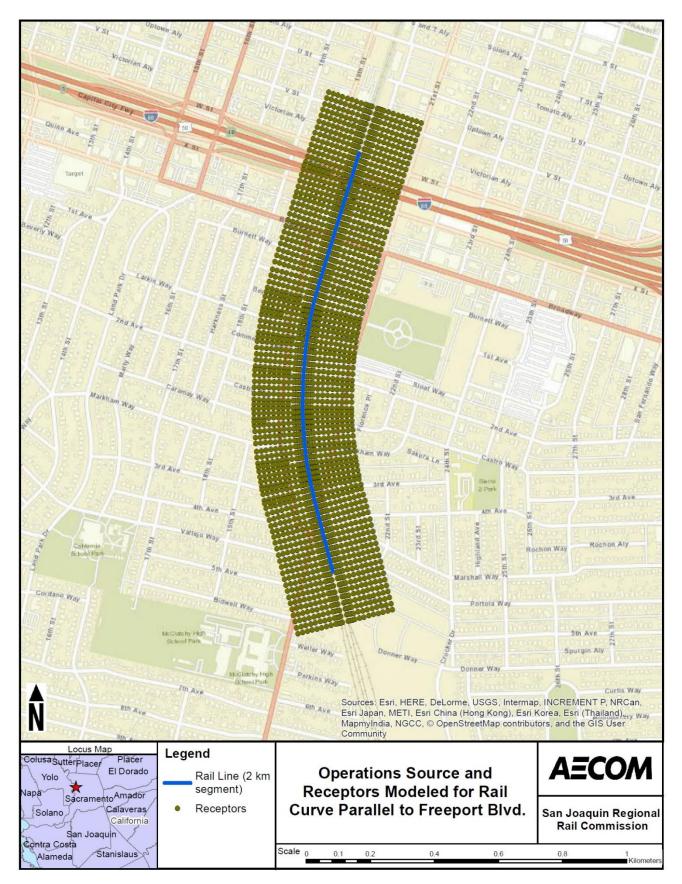


Figure A-13: City College Station

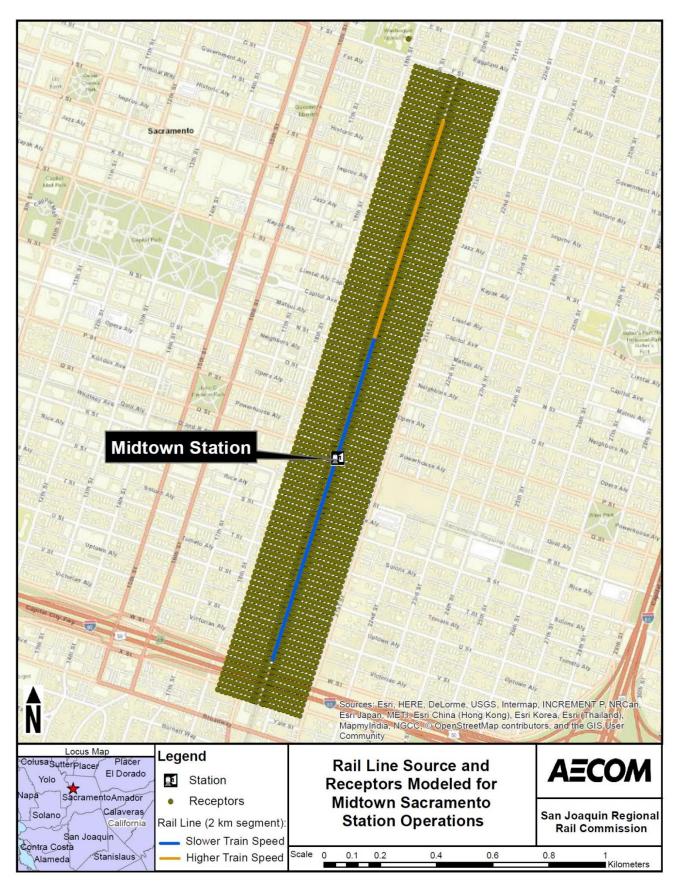


Figure A-14: Freeport Boulevard Curve

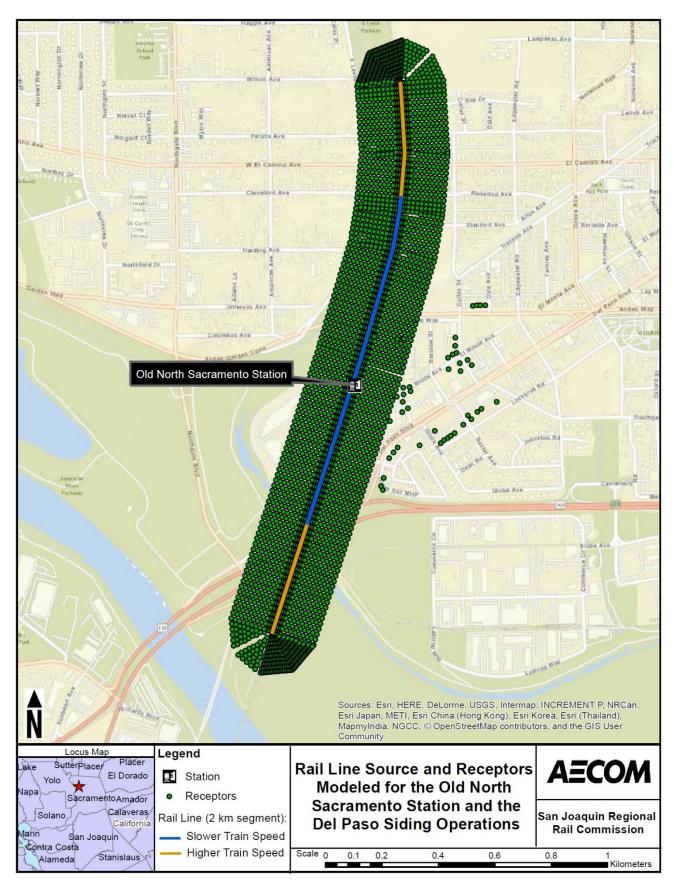


Table A-8: Lodi Station Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width ³ [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Track (North Segment) – High Speeds ¹	43	1.16279E-02	2	12.2	5	5.67	1.163
Track (South Segment) – High Speeds ²	43	1.16279E-02	2	12.2	5	5.67	1.163
Track – Slow Speeds/Near Station	135	7.40741E-03	2	12.2	5	5.67	1.163
Notes: g/s/vol = grams per second per number of volume sources. Follows SJVAPCD guidance. 1. Segment of track that is 400 m north of the station. 2. Segment of track that is 400 m south of the station. 3. Source width accounts for 3 m on each side of track for wake affects and 3.1 m for track width.							

Table A-9: Stockton ACE Station Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width ³ [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Track (North Segment) – High Speeds ¹	32	1.56250E-02	2	12.2	5	5.67	1.163
Track (South Segment) – High Speeds ²	32	1.30230E-02	2	12.2	5	5.67	1.163
Track – Slow Speeds/Near Station	101	9.90099E-03	2	12.2	5	5.67	1.163
Notes: g/s/vol = grams per second per number of volume sources. Follows SJVAPCD guidance. 1. Segment of track that is 400 m north of the station.							

2. Segment of track that is 400 m south of the station.

3. Source width accounts for 3 m on each side of track for wake affects and 3.1 m for track width.

Table A-10: Thornton Track Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width ² [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]	
Track – High Speed ¹	164	6.09756E-03	2	12.2	5	5.67	1.163	
Notes: g/s/vol = grams per second per number of volume sources. Follows SJVAPCD guidance. 1. Higher train speed used since no station at this site. 2. Source width accounts for 3 m on each side of track for wake affects and 3.1 m for track width.								

Table A-11: North of Elk Grove Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Units	-	[g/s/vol]	-	[m]	[m]	[m]	[m]
Track (North Segment) – High Speeds ¹	134	2 745225 02	1	3	5	1.40	1.163
Track (South Segment) – High Speeds ²	133	3.74532E-03	1	3	5	1.40	1.163
Track – Slow Speeds/Near Curve	400	2.50000E-03	1	3	5	1.40	1.163
Notes: g/s/vol = grams per second per number of volume sources. Follows SMAQMD guidance.							

1. Segment of track that is north of the curve.

Segment of track that is north of the curve approach.

Table A-12: City College Station Operational	Volume Source Parameters
--	--------------------------

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width ³ [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Track (North Segment) – High Speeds ¹	50	1.00000E-02	2	8	5	3.72	1.163
Track (South Segment) – High Speeds ²	50	1.00000E-02	2	8	5	3.72	1.163
Track – Slow Speeds/Near Station	150	6.66667E-03	2	8	5	3.72	1.163
Notes: g/s/vol = grams per set 1. Segment of track that is 2. Segment of track that is 3. Width accounts for 2 m	400 m north of the 400 m south of th	e station. e station.		MD guidance.			

Table A-13: Freeport Boulevard Curve Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Track – High Speed	446	2.24215E-03	1	3	5	1.40	1.163
Notes: g/s/vol = grams per se 1. Higher train speed used			Follows SMAQ	MD guidance.	1		

Table A-14: Midtown Sacramento Station Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Track (North Segment) – High Speeds ¹	133	3.74532E-03	1	3	5	1.40	1.163
Track (South Segment) – High Speeds ²	134	3.74532E-03	1	3	5	1.40	1.163
Track – Slow Speeds/Near Station	401	2.49377E-03	1	3	5	1.40	1.163
Notes: g/s/vol = grams per se 1. Segment of track that is 2. Segment of track that is	400 m north of th	e station.	. Follows SMAQ	MD guidance.			

Table A-15: Old North Station & Del Paso Track Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width ³ [m]	Release Height [m]	Sigma-y [m]	Sigma-z [m]
Track (North Segment) – High Speeds ¹	51	9.80392E-03	2	8	5	3.72	1.163
Track (South Segment) – High Speeds ²	51	9.00392E-03	2	8	5	3.72	1.163
Track – Slow Speeds/Near Station	150	6.66667E-03	2	8	5	3.72	1.163
			-	-	5	3.72	1.163

ime sources. F ollows SMAQMD guidance. Segment of track that is 400 m north of the station.

1.

2. Segment of track that is 400 m south of the station.

3. Width accounts for 2 m gap between tracks. Each track width is 6 m.

Table A-16: Natomas/Sacramento International Airport Station Operational Volume Source Parameters

Source Details	# of Volume Sources	Emissions per Volume [g/s/vol]	No. of Tracks	Width [m]	Release Height [m]	Sigma- y [m]	Sigma-z [m]
Track (North Segment) – High Speeds ¹	134	3.73134E-03	1	3	5	1.40	1.163
Track (South Segment) – High Speeds ²	134	3.73134E-03	1	3	5	1.40	1.163
Track – Slow Speeds/Near Station	400	2.50000E-03	1	3	5	1.40	1.163
Shuttle Bus ³	1406	7.11238E-04	-	3.65	6.8	1.70	3.200
Notes: g/s/vol = grams per s	econd per number	of volume sources	. Follows SMAC	MD guidance.	•		

1. 2.

Segment of track that is 400 m north of the station. Segment of track that is 400 m south of the station. Segment of track that is 400 m south of the station. Shuttle bus between rail station and Sacramento International Airport. 3.

ΑΞϹΟΜ

Valley Rail Sacramento Extension Project

Health Risk Screening Modeling Archive

September 2020

This document provides descriptions of the files within the Health Risk modeling archive for the proposed Valley Rail Sacramento Extension Project.

Model_Archive_Readme.docx: This file which describes the modeling archive organization and files.

Executables: EPA executable files for AERMAP (version 18081) and AERMOD (version 19191).

Results_Summary: Contains Excel spreadsheets for each air district that include the cancer risk and chronic non-cancer risk output from HARP. The results are summarized in tables provided in the Summary tabs.

SJVAPCD: Contains the modeling files for San Joaquin Valley Air Pollution Control District (SJVAPCD). Each of the modeling sites are listed in separate folders. The meteorological data for all SJVAPCD sites are contained in the Met_Data folder. In each modeling site folders (except for Stockton ACE which does not involve construction) are the directories as follows:

- Construction contains the input and output files modeling files for the construction phase of the station/track improvements.
 - AERMAP contains the input and output files used to create the modeling receptor files (*.rou) that are used for input to AERMOD. National Elevation Dataset (NED) files are included, which are obtained from the U.S. Geological Survey (USGS).
 - **AERMOD** contains the input and output files from AERMOD.
 - HARP2 contains the input and output files (including emissions) from the HARP software.
- Operations contains the input and output files modeling files for the operational phase of the tracks for the 2 km segments discussed in the HRA.
 - AERMAP contains the input and output files used to create the modeling receptor files (*.rou) that are used for input to AERMOD. National Elevation Dataset (NED) files are included, which are obtained from the U.S. Geological Survey (USGS).
 - **AERMOD** contains the input and output files from AERMOD.
 - HARP2 contains the input and output files (including emissions) from the HARP software.

SMAQMD: Contains the modeling files for Sacramento Metropolitan Air Quality Management District (SMAQMD). The meteorological data for the SMAQMD sites are contained in the Met_Data folder. In each modeling site folders (except for Freeport Curve which does not involve construction) are the directories as follows:

- **Construction** contains the input and output files modeling files for the construction phase of the station/track improvements.
 - AERMAP contains the input and output files used to create the modeling receptor files (*.rou) that are used for input to AERMOD. National Elevation Dataset (NED) files are included, which are obtained from the U.S. Geological Survey (USGS).
 - **AERMOD** contains the input and output files from AERMOD.
 - HARP2 contains the input and output files (including emissions) from the HARP software.
- **Operations** contains the input and output files modeling files for the operational phase of the tracks for the 2 km segments discussed in the HRA.
 - AERMAP contains the input and output files used to create the modeling receptor files (*.rou) that are used for input to AERMOD. National Elevation Dataset (NED) files are included, which are obtained from the U.S. Geological Survey (USGS).
 - **AERMOD** contains the input and output files from AERMOD.
 - HARP2 contains the input and output files (including emissions) from the HARP software.

June 23, 2020

Proposed Health Risk Assessment for the Valley Rail Sacramento Extension Project

With consideration for comments on the Valley Rail Sacramento Extension Project (proposed project) Draft Environmental Impact Report (EIR), the San Joaquin Joint Powers Authority (SJJPA) and the San Joaquin Regional Rail Commission (SJRRC) have decided to conduct a health risk assessment (HRA) for the proposed project in support of the air quality impact analysis in the EIR. The following provides an overview of the proposed approach.

I. Introduction

The Air Quality Analysis in support of the proposed project will be expanded to include preparation of a HRA and supporting Technical Report in response to comments by the Sacramento Metropolitan Air Quality Management District (SMAQMD) on the proposed project's Draft EIR. The HRA will be conducted on Phase I improvements under the proposed project only and will not consider Phase II improvements.¹

II. Objectives

The purpose of the HRA is to assess potential toxic air contaminant (TAC) emission impacts associated with short-term construction and long-term daily operation of the proposed project. SMAQMD has requested that the HRA be prepared as part of the response to comments on the Draft EIR to determine the potential risk on the exposure of sensitive receptors to TAC emissions from the proposed project.

The HRA and Technical Report will be developed consistent with guidance and methodologies from local, regional, state, and federal agencies, including the California Air Pollution Control Officers Association (CAPCOA) (2009), the California Air Resources Board (ARB) (2017), the Office of Environmental Health Hazard Assessment (OEHHA) (2015), SMAQMD Mobile Sources Air Toxics Protocol (2019), and the U.S. Environmental Protection Agency (EPA) (2017) to support the proposed project's California Environmental Quality Act (CEQA) documentation.

Consistent with CEQA requirements and guidance provided by CAPCOA, the analysis will evaluate:

- 1. *Health risk and hazard impacts of construction emissions* from the proposed project to the existing off-site sensitive receptors located within 500 feet of the project alignment.
- 2. Health risk and hazard impacts of operational emissions from the project-related to existing off-

¹ All proposed Phase II improvements have been dropped from further consideration by the SJRRC.

site sensitive receptors (residents and schools) located within 500 feet of the project alignment.

III. HRA Methodology Overview

Mass Emissions Estimates

Project-related construction and operational emissions were estimated for each component of the proposed project in support of the Draft EIR. These emissions will be refined slightly to include application of the ARB off-model adjustment factors for EMFAC2017 to account for changes in vehicle emissions due to the *Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule Part One: One National Program,* recently adopted at the Federal government level. The refined emissions will be broken out by location and serve as the input to the HRA modeling. Only the mitigated construction emissions will be used, not separate unmitigated and mitigated scenarios, as these are required to reduce construction-related emissions to a less than significant level irrespective of the HRA.

Receptor Exposure and Health Risk Calculations

The HRA will evaluate TAC emissions (e.g., diesel particulate matter) and the potential exposure of existing nearby sensitive receptors within 500 feet of the proposed project alignment to substantial pollutant concentrations. The HRA will quantify health risks (cancer and non-cancer chronic risk) resulting from the proposed project on the surrounding community per year of construction and under full operational conditions.

The incremental increase in cancer risk and non-cancer chronic risk will be assessed using an acceptable air dispersion model. The American Meteorological Society/EPA Regulatory Model (AERMOD) dispersion model (Version 19191) will be used to estimate pollutant concentrations at specific distances from emission sources. Hourly meteorological data will be obtained from the most representative meteorological station to each location to be analyzed along the alignment. Terrain elevations will be obtained from commercially available digital terrain elevations developed by the United States Geological Survey's (USGS') National Elevation Dataset (NED). The NED data provide terrain elevations with 1 meter vertical resolution and 10 meter (1/3 arc-second) horizontal resolution based on a Universal Transverse Mercator (UTM) coordinate system. The USGS specifies coordinates in North American Datum 83, UTM Zone 10. Lakes Environmental software will be used to process the NED data and assign elevations to the receptor locations and sources.

The ARB created the Hot Spots Analysis and Reporting Program Version 2 (HARP2) software (Version 19121) to assist in the development of emissions inventories, dispersion modeling, and risk assessment. Maximum hourly and period-average files generated by AERMOD will be input to HARP2 with corresponding TAC emission rates for each phase of construction as well as the project operational emissions to calculate project concentration contributions. HARP2 will be used solely to estimate cancer and non-cancer chronic risk consistent with the exposure factors and guidance from OEHHA. Health risks will be calculated for all receptors and for the maximally exposed individual at a sensitive receptor. Risks to receptors will be calculated assuming exposure during the entire construction period through operations. A total 30-year cancer and non-cancer chronic risk from 30 years of exposure to project emissions will be presented by adding the construction risks to the operational risk at each receptor location.

Valley Rail Extension Project Draft Health Risk Analysis Scope Due to the linear nature of the proposed project over approximately 52 miles of existing railroad alignment, modeling in support of the HRA will be conducted at select locations to represent the maximum potential impacts. These locations have been identified based upon the following criteria: magnitude of potential project-related emissions, alignment orientation, unique meteorological conditions, and proximity of sensitive receptors. See Tables 1 and 2 for a detailed list of proposed modeling locations selected to analyze the maximum potential impact of the proposed project, considering both construction and operational emissions.

IV. Revisions to the Draft EIR

The results of the HRA will be summarized in a Technical Report. The modeling outputs and assumptions will also be provided as a part of the Technical Report, which will be provided as an appendix to the EIR. The air quality analysis and impact findings in the EIR will be updated according to the conclusions of the HRA.

V. Modeling Scenarios

Table 1. Modeling Scenarios within SJVAPCD

Project Element (Refer to Draft EIR Chapter 2, Project Description)	Alignment (degrees from North)	Meteorological Station	Phase (Construction and/or Operations)	Construction Duration (months)	Construction Year	Model (Y/N)	Notes
Stockton Downtown/ACE Station	347.7	Stockton	Operations	N/A	N/A	Y	No construction proposed, but will incur increased train operations.
Track Curve Reconstruction East March Lane to East Swain Road	337.5-343.5	Stockton	Construction	1	2022	N	Same emissions and alignment as Thornton
Track Curve Reconstruction North of North New Hope Road	340.4	Stockton	Construction	1	2022	N	Same emissions and alignment as Thornton
Hammer Lane Siding Upgrade	336.7	Stockton	Construction	1	2023	N	Same emissions and alignment as Thornton
Thornton Siding Upgrade & Extension	336.9-343.4	Stockton	Construction /Operations	4	2023	Y	
Lodi Station	336.7	Stockton	Construction/Operations	14	2021	Y	Model Lodi Station construction with Lodi siding
Lodi Station South Alternative	336.7	Stockton	Construction/Operations	14	2021	N	Same as other alternative
Lodi Siding	336.7	Stockton	Construction	8	2021	N	Model w/ station construction

Table 2. Modeling Scenarios within SMAQMD

Project Element (Refer to Draft EIR Chapter 2, Project Description)	Alignment (degrees from North)	Meteorological Station	Phase (Construction and/or Operations)	Construction Duration (months)	Construction Year	Model (Y/N)	Notes
Track Curve Reconstruction South of Desmond Road	349.85	Sac. Exec.	Construction	1	2022	N	No residences within 500 ft
Philips Siding Upgrade and Extension	355.3	Sac. Exec.	Construction	2	2021	N	Same alignment as N. Elk Grove
North Elk Grove Station	355.29	Sac. Exec.	Construction/Operations	14	2021		All Variants Result in the
North Elk Grove Siding	355.29	Sac. Exec.	Construction	8	2021	Y	Same Emissions and
Track Curve Reconstruction North of North Elk Grove Station	355	Sac. Exec.	Construction	1	2022		Duration
Pollock Siding Upgrade	346.9	Sac. Exec.	Construction	2	2023	N	Same alignment and emissions as South Sacramento Siding
New Crossover	346.9	Sac. Exec.	Construction	2	2023	N	Same alignment and emissions as South Sacramento Siding
City College Station	347	Sac. Exec.	Construction/Operations	8	2023	Y	Model construction w/ South Sacramento Siding
South Sacramento Siding Upgrade	347	Sac. Exec.	Construction	4	2023	N	Model construction w/ City College Station
Freeport Blvd Parallel - Curve	347-19	Sac. Exec.	Operations	N/A	N/A	Y	Included to assess increased train operations on a unique segment of alignment that doesn't also include construction activity.
Midtown Sacramento Station	19.24	Sac. Exec.	Construction/Operations	12	2021	Y	
Old North Sacramento Station	19.54	Sac. McCl.	Construction/Operations	14	2023		SETA Childcare, Residences
Del Paso Siding Upgrade and Extension	352.1- 19.54	Sac. McCl.	Construction/Operations	12	2021	Y	up by Del Paso Curve
Natomas / Sacramento Airport Station	352.14	Sac. McCl.	Construction/Operations	12	2021	Y	

Osue Validades 0 Joning 1 Joning 1 Joning 1 Joning 0 LORD STADON. SOUTH ALTIENATURE 8 Longhomes 8 Dardianowing 1 Diffac Valacks 0 Diffac Valacks 0 Data 0 TRACK CREE RECONSTRUCTION NORTH OF NORTH IN WHORE RD 0 Grade Valacks 0 Conse Valacks 0	G CO 803 39: 1.48 9.994 44.5 9.994 44.5 9.994 44.5 9.994 44.5 9.994 44.5 9.994 44.	30 0.7 - - 52 3.0 58 103.7 75 99.9 30 0.7 - 52 3.0 58 103.7 51 77.1 20 0.5 - - 78 2.6 49 80.3	SO2 0 0.10 9 0.00 6 0.02 5 0.12 0 0.10 6 0.02 6 0.02 6 0.02 6 0.02 6 0.02 6 0.02 6 0.02 5 0.01 0 0.07	Damissions (Bréday) PM10 3.17 6.95 19.72	PM2.5 PM2.5 3.06 0.69 10.80 - 0.07 14.62 - 0.07 14.63 - 0.07 14.63 - 0.07 - 14.63 - 0.07 - 0.07 - 0.08 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.09 - 0.00 - - 0.00 - 0.00 - - - - - - 0.00 - - - - - - - - - - - - -	CO2 9735.88 22568 239 9963.95 9735.88 225.68 2236 996135 239 996135 150.38 150.38 150.38 150.38 153.38	CH4 1.40 0.01	N20 0.63 0.07 0.72 0.63 0.07 0.72 0.63 0.03	Daily Emissions (metric sonviday) CO2e 4.52 0.10 0.688 5.60 4.52 0.10 0.688 5.90 2.75 0.07	ROG 0.52 0.01 0.02 0.60 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.01 0.02 0.01 0.02 0	CO 2.92 0.02 3.19 2.92 0.02 - 0.23 0.00	NOX 5.46 0.05 5.82 5.46 0.05 - 0.30 5.82 0.03 0.68 0.00	Max Anni SO2 0.01 0.00 0.01 0.00 0.00 0.00 0.00	PM10 0.23 0.37 0.38 0.19 1.18 0.23 0.37 0.38 0.19 1.18 0.02 0.02 0.02 0.02 0.02	s (tons/year) PM2.5 0.22 0.04 0.21 0.05 0.52 0.22 0.04 0.05 0.52 0.05 0.52 0.05 0.52 0.05 0.	CO2 585.38 13.51 141.98 740.87 740.87 141.98 141.98 740.87	CH4 0.14 0.00 0.14 0.14 0.00 0.14 0.00 0.14 0.00 0.14	0.05 0.06 0.00 0.00 0.06 0.06 0.06 0.06	tital Emissions (metric tons) CO2e 550.9 12.2 128.8 601.9 550.9 12.2 128.8 601.9 550.9 12.2 2 550.9 12.2 550.0 12.2 550.0 550.0 12.2 550.0 12.2 550.0 12.2 550.0 12.2 550.0 550.0 550.0 12.2 550.0 5
Page188mm Construction CASI STATION N Fauge087 0 Fauge087 0 Paring 0 Paring 0 Callar Valids 0 Data Station Station 0 Data Valids 0 Callar Valids 0 Data Valids 0 Callar Valids 0 Callar Valids 0 Callar Valids 8 Callar Valids 8 Callar Valids 8 Callar Valids 8 Callar Valids 9 Callar Valids 8 Callar Valids 8 Callar Valids 8 Callar Valids 8 Callarboxing 9 Callarboxing 9 <	803 39; 0.12 0; 1.48 - 0.31 4; 9.94 44; 8.03 39; 1.70 - 1.016 44; 5.56 21; 0.068 0; 0.000 - 0.23 2; 5.86 24;	75 99,99,00 30 0,7 52 1,0,0,7 75 99,9 30 0,7 52 1,0,0,7 52 1,0,0,7 53 1,0,0,7 54 1,0,0,7 51 77,1,1 50 0,0,7 	0 0.10 9 0.00 	3.17 6.95 19.72 2.31 32.16 6.95 19.82 2.31 32.25 2.16 4.55 19.58 1.74	3.06 0.69 10.80 0.07 14.62 3.06 0.69 10.81 0.07 44.63 2.08 0.45 10.79 0.05	9735.88 225.68 9965.95 9735.88 225.68 9735.88 225.68 9963.95 9963.95 5936.26 150.38 5936.26	1.40 0.01 	0.63 0.03 	4.52 0.10 0.68 <u>3.30</u> 4.52 0.10 0.68 <u>5.30</u> 2.75	0.52 0.01 0.05 0.60 0.52 0.01 0.05 0.05 0.60	2.92 0.02 3.19 2.92 0.02	5.46 0.05	0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01	0.23 0.37 0.38 0.19 1.18 0.23 0.33 0.38 0.19 1.18 0.19 1.18	022 004 021 - 006 0.52 0.22 0.04 0.21 - 0.06 0.52 0.52	585.38 13.51 141.98 740.87 585.38 13.51 141.98 740.87 740.87	0.14 0.00 0.14 0.14 0.00 0.14	0.06 0.00 0.01 0.06 0.06 0.00 0.01	530.9 12.2 128.8 691.9 12.2 128.8 (0)1.9 (0)1.9 52.4
Pojnet Resource Construction DOR STATION Normality Normality Response 0 Response 0 Paring 0 Response 8 Galacy Models 8 Galacy Models 8 Galacy Models 8 Galacy Models 1 Constructions 1 Galacy Models	803 39; 0.12 0; 1.48 - 0.31 4; 9.94 44; 8.03 39; 1.70 - 1.016 44; 5.56 21; 0.068 0; 0.000 - 0.23 2; 5.86 24;	75 99,99,00 30 0,7 52 1,0,0,7 75 99,9 30 0,7 52 1,0,0,7 52 1,0,0,7 53 1,0,0,7 54 1,0,0,7 51 77,1,1 50 0,0,7 	0 0.10 9 0.00 	3.17 6.95 19.72 2.31 32.16 6.95 19.82 2.31 32.25 2.16 4.55 19.58 1.74	3.06 0.69 10.80 0.07 14.62 3.06 0.69 10.81 0.07 44.63 2.08 0.45 10.79 0.05	9735.88 225.68 9965.95 9735.88 225.68 9735.88 225.68 9963.95 9963.95 5936.26 150.38 5936.26	1.40 0.01 	0.63 0.03 	4.52 0.10 0.68 <u>3.30</u> 4.52 0.10 0.68 <u>5.30</u> 2.75	0.52 0.01 0.05 0.60 0.52 0.01 0.05 0.05 0.60	2.92 0.02 3.19 2.92 0.02	5.46 0.05	0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01	0.23 0.37 0.38 0.19 1.18 0.23 0.33 0.38 0.19 1.18 0.19 1.18	022 004 021 - 006 0.52 0.22 0.04 0.21 - 0.06 0.52 0.52	585.38 13.51 141.98 740.87 585.38 13.51 141.98 740.87 740.87	0.14 0.00 0.14 0.14 0.00 0.14	0.06 0.00 0.01 0.06 0.06 0.00 0.01	550.5 122 1288 691.9 122 1288 691.5 122 550.5 122 550.5 122 524
LODE STATION LODE STATION EXEMPTONE Factoring Fact	0.12 0.1 1.48 0.0 0.31 4.2 9.94 44.3 8.03 39: 0.12 0.0 1.70 0.0 0.31 4.2 10.16 44.2 5.56 21.1 0.08 0.2 0.00 0.0 0.02 2.2 5.580 24.4	30 0.7 - - 52 3.0 58 103.7 75 99.9 30 0.7 - 52 3.0 58 103.7 51 77.1 20 0.5 - - - - - - - - - - - - -	9 0.00 6 0.02 5 0.12 0 0.10 9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 5 0.01 5 0.02 5 0.01	6.98 19.72	0.69 10.80 - - 0.07 14.62 10.81 - - 0.09 10.81 - - - 0.07 14.63 2.08 0.07 14.63	225.68 2.39 9963.95 9735.88 225.68 2.39 9963.95 9963.95 9963.95 9963.95 9963.95	0.01 0.61 2.01 1.40 0.01 2.01 0.61 2.01 0.94 0.00	0.03 0.07 0.72 0.63 0.03 - 0.07 0.72 0.72 0.42 0.02 - -	0.10 0.68 5.30 4.52 0.10 0.68 5.30 2.75	0.01 0.05 0.02 0.60 0.52 0.01 0.05 0.02 0.60	0.02 0.25 3.19 2.92 0.02	0.05 	0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00	0.37 0.38 0.19 1.18 0.23 0.37 0.38 0.37 0.38 0.19 1.18 0.02 0.02 0.02	0.04 0.21 - 0.06 0.52 0.22 0.04 0.21 - 0.06 0.32 0.02 0.32	13.51 141.98 740.87 585.38 13.51 141.98 740.87 55.92	0.00 	0.00 0.01 0.05 0.00 - 0.01 0.08 - 0.01 0.08	122 1288 691.9 550.5 122 1288 691.5 691.5 691.5 691.5 691.5 691.5 691.5 691.5 691.5 691.9
Balajanest 84 Balajanest 0 Orack Videls 0 Pring 0 Orack Videls 0 Galaster Videls 0 Galaster Videls 0 Galaster Videls 1 Data Videls 1 Balantoving 0 Data Videls 1 Balantoving 0 Data Videls 1 Balantoving 0 Data Videls 1 Balantoving 1 Data Videls 1 Balantoving 1 Data Videls 1 Balantoving 1 Data Videls 1 Balantoving 0 Data Videls 1 Balantoving 1 Data	0.12 0.1 1.48 0.0 0.31 4.2 9.94 44.3 8.03 39: 0.12 0.0 1.70 0.0 0.31 4.2 10.16 44.2 5.56 21.1 0.08 0.2 0.00 0.0 0.02 2.2 5.580 24.4	30 0.7 - - 52 3.0 58 103.7 75 99.9 30 0.7 - 52 3.0 58 103.7 51 77.1 20 0.5 - - - - - - - - - - - - -	9 0.00 6 0.02 5 0.12 0 0.10 9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 5 0.01 5 0.02 5 0.01	6.98 19.72	0.69 10.80 - - 0.07 14.62 10.81 - - 0.09 10.81 - - - 0.07 14.63 2.08 0.07 14.63	225.68 2.39 9963.95 9735.88 225.68 2.39 9963.95 9963.95 9963.95 9963.95 9963.95	0.01 0.61 2.01 1.40 0.01 2.01 0.61 2.01 0.94 0.00	0.03 0.07 0.72 0.63 0.03 - 0.07 0.72 0.72 0.42 0.02 - -	0.10 0.68 5.30 4.52 0.10 0.68 5.30 2.75	0.01 0.05 0.02 0.60 0.52 0.01 0.05 0.02 0.60	0.02 0.25 3.19 2.92 0.02	0.05 	0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00	0.37 0.38 0.19 1.18 0.23 0.37 0.38 0.37 0.38 0.19 1.18 0.02 0.02 0.02	0.04 0.21 - 0.06 0.52 0.22 0.04 0.21 - 0.06 0.32 0.02 0.32	13.51 141.98 740.87 585.38 13.51 141.98 740.87 55.92	0.00 	0.00 0.01 0.05 0.00 - 0.01 0.08 - 0.01 0.08	12: 128: 691.9 550: 12: 128: 691.9 52.
Onaise Validades 90 Orale Analysis 90 Offact Validades 802 Offact Validades 802 Standmotting 90 Standmotting	0.12 0.1 1.48 0.0 0.31 4.2 9.94 44.3 8.03 39: 0.12 0.0 1.70 0.0 0.31 4.2 10.16 44.2 5.56 21.1 0.08 0.2 0.00 0.0 0.02 2.2 5.580 24.4	30 0.7 - - 52 3.0 58 103.7 75 99.9 30 0.7 - 52 3.0 58 103.7 51 77.1 20 0.5 - - - - - - - - - - - - -	9 0.00 6 0.02 5 0.12 0 0.10 9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 5 0.01 5 0.02 5 0.01	6.98 19.72	0.69 10.80 - - 0.07 14.62 10.81 - - 0.09 10.81 - - - 0.07 14.63 2.08 0.07 14.63	225.68 2.39 9963.95 9735.88 225.68 2.39 9963.95 9963.95 9963.95 9963.95 9963.95	0.01 0.61 2.01 1.40 0.01 2.01 0.61 2.01 0.94 0.00	0.03 0.07 0.72 0.63 0.03 - 0.07 0.72 0.72 0.42 0.02 - -	0.10 0.68 5.30 4.52 0.10 0.68 5.30 2.75	0.01 0.05 0.02 0.60 0.52 0.01 0.05 0.02 0.60	0.02 0.25 3.19 2.92 0.02	0.05 	0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00	0.37 0.38 0.19 1.18 0.23 0.37 0.38 0.37 0.38 0.19 1.18 0.02 0.02 0.02	0.04 0.21 - 0.06 0.52 0.22 0.04 0.21 - 0.06 0.32 0.02 0.32	13.51 141.98 740.87 585.38 13.51 141.98 740.87 55.92	0.00 	0.00 0.01 0.05 0.00 - 0.01 0.08 - 0.01 0.08	122 1288 691.9 550.5 122 1288 691.5 691.5 691.5 691.5 691.5 691.5 691.5 691.5 691.5 691.9
Earthorwing - Traing 1 Traing 1 Tail 1 Tail 1 Tail 1 Statistics 1 Statistics 1 Statistics 1 Statistics 1 Statistics 1 Statistics 0	1.48 - 0.31 4: 9.94 44.5 8.03 39: 0.12 0: 1.70 - 0.31 4: 1016 44.5 5.56 21.2 0.08 0: 0.00 - 0.23 2: 5.86 24.5	52 3.0 58 103.7c 75 99.9 30 0.7 51 77.1 20 0.5 51 77.1 20 0.5 - - 78 2.6 49 80.3	6 0.02 5 0.12 0 0.10 9 0.00 - - 6 0.02 6 0.12 1 0.06 3 0.00 - - 5 0.017	19.72 2.31 32.16 3.17 6.95 19.82	10.80 - 0.07 14.62 3.06 0.69 10.81 - 0.07 14.63 - 2.08 0.43 10.79 - 0.06	- 2.39 9963.95 9735.88 225.68 - 3.39 9963.95 5936.26 150.38 - 150.38 - 150.38	0.61 2.01 1.40 0.01	0.07 0.72 0.63 0.03	0.68 5.30 4.52 0.10 0.68 5.30 2.75	. 0.05 0.02 0.60 0.52 0.01 0.05 0.02 0.60	- 0.25 3.19 2.92 0.02 	5.46 0.05 0.05 0.30 5.82 0.30 0.68	0.00 0.01 0.01 0.00 0.00 0.01	0.38 0.19 1.18 0.23 0.37 0.38 0.19 1.18 0.02 0.02	0.21 - 0.06 0.52 0.22 0.04 0.21 - 0.06 0.52 0.02 0.00	141.98 740.87 585.38 13.51 141.98 740.87 55.92	0.00 0.14 0.14 0.00 - 0.00 0.14	0.01 0.08 0.06 0.00 - - 0.01 0.08	128.1 691.9 550.9 12: 128.1 691.9 52.4
Paning 101 Order Vinkles 001 Galar Mixtles 001 Galar Mixtles 1 Galar Mixtles 2 Galar Mixtles 2 Galar Mixtles 2 Galar Mixtles 1 Galar Mixtles	0.31 4.4 9.94 44.5 8.03 39: 0.12 0.1 1.70 - 0.31 4.4 10.16 44.5 5.56 21.5 0.08 0.5 0.00 - 0.23 2.4 5.86 24.4	8 103.76 75 99.9 30 0.7 51 77.1 51 77.1 70 0.5 75 78 78 2.6 49 80.3	5 0.12 0 0.10 9 0.00 - 0 6 0.02 6 0.12 1 0.06 3 0.00 - 0 5 0.01 0 0.07	2.31 32.16 3.17 6.98 19.82 2.31 32.25 2.16 4.55 19.58 1.74	0.07 14.62 3.06 0.69 10.81 - - - 14.63 2.08 0.45 10.79 - - 0.06	9963.95 9735.88 225.68 2.39 9963.95 5936.26 150.38	0.01 1.40 0.01 0.61 2.01 0.94 0.09 0.94	0.72 0.63 0.03 0.07 0.72 0.42 0.02	4.52 0.10 0.68 5.30 2.75	0.02 0.60 0.52 0.01 0.05 . 0.02 0.60	3.19 2.92 0.02	5.82 5.46 0.05 - - - 0.30 5.82 0.68	0.01 0.01 0.00 .000 0.01	0.19 1.18 0.23 0.37 0.38 0.19 1.18 0.02 0.02	0.06 0.52 0.22 0.04 0.21 0.06 0.52 0.06 0.52 0.00	740.87 585.38 13.51 141.98 740.87 55.92	0.14 0.14 0.00	0.05 0.06 0.00 - - 0.01 0.08	691.9 550.9 12: 128.9 691.9 52.9
Offair Valdes	9.94 44.3 8.03 39: 0.12 0: 1.70 0: 1.70 0: 1.70 0: 5.56 21: 0.06 0: 0.000 0: 0.23 2: 5.86 24:	8 103.76 75 99.9 30 0.7 51 77.1 51 77.1 70 0.5 75 78 78 2.6 49 80.3	5 0.12 0 0.10 9 0.00 - 0 6 0.02 6 0.12 1 0.06 3 0.00 - 0 5 0.01 0 0.07	32.16 32.16 19.82	14.62 3.06 0.69 10.81 - - 0.07 14.63 2.08 0.45 10.79 - - 0.06	9963.95 9735.88 225.68 2.39 9963.95 5936.26 150.38	0.01 1.40 0.01 0.61 2.01 0.94 0.09 0.94	0.72 0.63 0.03 0.07 0.72 0.42 0.02	4.52 0.10 0.68 5.30 2.75	0.02 0.60 0.52 0.01 0.05 0.02 0.60 0.05	3.19 2.92 0.02	5.82 5.46 0.05 - - - 0.30 5.82 0.68	0.01 0.01 0.00 .000 0.01	1.18 0.23 0.37 0.38 0.19 1.18 0.02 0.02	0.52 0.22 0.04 0.21 - 0.06 0.52 0.02 0.00	740.87 585.38 13.51 141.98 740.87 55.92	0.14 0.14 0.00	0.05 0.06 0.00 - - 0.01 0.08	691.9 550.5 12.1 128.8 691.5 52.4
Total 2021 202 Cond TATION-SOUTH ALTERNATVE Backmann 0 Backmann 0 0 Backmann 0 0 Backmann 0 0 Dark Valdos 0 0 Did Waldos 1 0 TRACK CONVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN N TRACK CONVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN 0 Dida Waldos 0 0 0 Oblas Waldos 0 0 0 Darkowskich 0 0 0 Darkowskich <t< td=""><td>8.03 39: 0.12 0: 1.70 0. 1.70 0. 1.70 0. 1.70 0. 1.70 0. 0.31 4. 0.05 0. 0.00 0. 0.00 0. 0.02 2. 5.86 24.</td><td>75 99.9 30 0.7 52 3.0 58 103.7 51 77.1 20 0.5 - - 78 2.6 49 80.3</td><td>0 0.10 9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 5 0.01 0 0.07</td><td>3.17 6.95 19.82</td><td>3.06 0.69 10.81 - - - 14.63 2.08 0.45 10.79 - 0.06</td><td>9735.88 225.68 2.39 9963.95 9963.95 9963.95 1903.8 150.38</td><td>1.40 0.01 </td><td>0.63 0.03 0.07 0.72 0.42 0.02</td><td>4.52 0.10 0.68 5.30 2.75</td><td>0.52 0.01 0.05 - 0.02 0.60</td><td>2.92 0.02</td><td>5.46 0.05 - - 0.30 5.82</td><td>0.01 0.00 .000 0.01</td><td>0.23 0.37 0.38 0.19 1.18 0.02 0.02</td><td>0.22 0.04 0.21 - 0.06 0.52 0.02 0.00</td><td>585.38 13.51 141.98 740.87 55.92</td><td>0.14 0.00 - - 0.00 0.14</td><td>0.06 0.00 - - 0.01 0.08</td><td>691.9 550.9 12.2 128.8 691.9 52.4</td></t<>	8.03 39: 0.12 0: 1.70 0. 1.70 0. 1.70 0. 1.70 0. 1.70 0. 0.31 4. 0.05 0. 0.00 0. 0.00 0. 0.02 2. 5.86 24.	75 99.9 30 0.7 52 3.0 58 103.7 51 77.1 20 0.5 - - 78 2.6 49 80.3	0 0.10 9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 5 0.01 0 0.07	3.17 6.95 19.82	3.06 0.69 10.81 - - - 14.63 2.08 0.45 10.79 - 0.06	9735.88 225.68 2.39 9963.95 9963.95 9963.95 1903.8 150.38	1.40 0.01 	0.63 0.03 0.07 0.72 0.42 0.02	4.52 0.10 0.68 5.30 2.75	0.52 0.01 0.05 - 0.02 0.60	2.92 0.02	5.46 0.05 - - 0.30 5.82	0.01 0.00 .000 0.01	0.23 0.37 0.38 0.19 1.18 0.02 0.02	0.22 0.04 0.21 - 0.06 0.52 0.02 0.00	585.38 13.51 141.98 740.87 55.92	0.14 0.00 - - 0.00 0.14	0.06 0.00 - - 0.01 0.08	691.9 550.9 12.2 128.8 691.9 52.4
Tappener 8 Tappener 8 Garbanovica 9 Garbanovica 9 Tappener 0 Tappener 0 Tappener 0 Tappener 0 Tappener 0 Data 1 Tappener 0 Data 1	0.12 0: 1.70 - 0.31 4: 10.16 44: 5.56 21: 0.08 0: 0.00 - 0.23 2: 5.86 24:	30 0.7 52 3.0 58 103.7 51 77.1 20 0.5 - 78 2.6 49 80.3	9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 - 8 0.01 0 0.07	6.95 19.82 	0.69 10.81 - - 0.07 14.63 2.08 0.45 10.79 - - 0.06	225.68 2.39 9963.95 5936.26 150.38	0.01 0.61 2.01 0.94 0.00	0.03	0.10	0.01 0.05 - 0.02 0.60	0.02 0.25 3.19 0.23	0.05	0.00	0.37 0.38 0.19 1.18 0.02 0.02	0.04 0.21 - 0.06 0.52 0.02 0.00	13.51 141.98 740.87 55.92	0.00 0.00 0.14	0.00	12.2 128.8 691.9 52.4
Onair Valden Sindarboring Sindarboring Sindarboring Tada Carlos BacConSTRUCTION BAST MARCH LN YO BAST SWAIN Tada Carlos Sindarboring TRACK CLEWS BACCONSTRUCTION BAST MARCH LN YO BAST SWAIN TRACK CLEWS BACCONSTRUCTION BAST MARCH LN YO BAST SWAIN TRACK CLEWS BACCONSTRUCTION NORTH NOP MOD ANT SWAIN Demonstration of the second sec	0.12 0: 1.70 - 0.31 4: 10.16 44: 5.56 21: 0.08 0: 0.00 - 0.23 2: 5.86 24:	30 0.7 52 3.0 58 103.7 51 77.1 20 0.5 - 78 2.6 49 80.3	9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 - 8 0.01 0 0.07	6.95 19.82 	0.69 10.81 - - 0.07 14.63 2.08 0.45 10.79 - - 0.06	225.68 2.39 9963.95 5936.26 150.38	0.01 0.61 2.01 0.94 0.00	0.03	0.10	0.01 0.05 - 0.02 0.60	0.02 0.25 3.19 0.23	0.05	0.00	0.37 0.38 0.19 1.18 0.02 0.02	0.04 0.21 - 0.06 0.52 0.02 0.00	13.51 141.98 740.87 55.92	0.00 0.00 0.14	0.00	12.2 128.8 691.9 52.4
Onair Valden Sindarboring Sindarboring Sindarboring Tada Carlos BacConSTRUCTION BAST MARCH LN YO BAST SWAIN Tada Carlos Sindarboring TRACK CLEWS BACCONSTRUCTION BAST MARCH LN YO BAST SWAIN TRACK CLEWS BACCONSTRUCTION BAST MARCH LN YO BAST SWAIN TRACK CLEWS BACCONSTRUCTION NORTH NOP MOD ANT SWAIN Demonstration of the second sec	0.12 0: 1.70 - 0.31 4: 10.16 44: 5.56 21: 0.08 0: 0.00 - 0.23 2: 5.86 24:	30 0.7 52 3.0 58 103.7 51 77.1 20 0.5 - 78 2.6 49 80.3	9 0.00 6 0.02 6 0.12 1 0.06 3 0.00 - 8 0.01 0 0.07	6.95 19.82 	0.69 10.81 - - 0.07 14.63 2.08 0.45 10.79 - - 0.06	225.68 2.39 9963.95 5936.26 150.38	0.01 0.61 2.01 0.94 0.00	0.03	0.10	0.01 0.05 - 0.02 0.60	0.02 0.25 3.19 0.23	0.05	0.00	0.37 0.38 0.19 1.18 0.02 0.02	0.04 0.21 - 0.06 0.52 0.02 0.00	13.51 141.98 740.87 55.92	0.00 0.00 0.14	0.00	12.2 128.8 691.5 52.4
Binknowing 1 Offici Vikilo 1 Offici Vikilo 201 BACK CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWARD 1 BD 1 RACK CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWARD 5 Damic Vikilor 5 Damic Vikilor 0 Offici Vikilor 0 Offici Vikilor 0 Offici Vikilor 0 Galanovikilor 0 Galanovikilor 0 Offici Vikilor 0 Galanovikilor 1 Galanovikilor 0 Offici Vikilor 1 Galanovikilor 1 Offici Vikilor 1 Offici Vikilor 1 Galanovikilor 1 Galanovikilor 1 Offici Vikilor 1 Galanovikilor 1 Galanovikilor 1 Galanovikilor 1 Galanovikilor 1 Galanovikilor 1 Galanovikilor	1.70 - 0.31 4:1 10.16 44: 5.56 21.2 0.08 0: - 0.00 - 0.23 2: 5.86 24.4	52 3.0 58 103.3 51 77.1 20 0.5 - 78 2.6 49 80.3	6 0.02 6 0.12 1 0.06 3 0.00 - 5 0.01 0 0.07	19.82 	10.81 - - 0.07 14.63 2.08 0.45 10.79 - - 0.06	2.39 9963.95 5936.26 150.38 	0.61 2.01 0.94 0.00	0.07 0.72 0.42 0.02	0.68 5.30 2.75	0.05 - 0.02 0.60 0.08	0.25 3.19 0.23	0.30 5.82 0.68	0.00 0.01 0.00	0.38 0.19 1.18 0.02 0.02	0.21 -	141.98 740.87 55.92	0.00	0.01	128.8 691.5 52.4
Officie Velocity CPORADE a EXTENSION Figure 10 Figure 1	0.31 4.3 10.16 44: 5.56 21: 0.08 0: - 0.00 - 0.23 2: 5.86 24:	58 103.7 51 77.1 20 0.5 - - 78 2.6 49 80.3	6 0.12 1 0.06 3 0.00 - 5 0.01 0 0.07	2.16 4.55 19.58	14.63 2.08 0.45 10.79 - 0.06	9963.95 5936.26 150.38	0.94 0.00	0.42 0.42 0.02	2.75	0.02 0.60	3.19	0.68	0.01	0.02 0.02	0.52	740.87	0.14	0.01	691.9 52.4
Officie Velocity CPORADE a EXTENSION Figure 10 Figure 1	0.16 44. 5.56 21.: 0.08 0.: 0.00 - 0.00 - 0.23 2.' 5.86 24.4	58 103.7 51 77.1 20 0.5 - - 78 2.6 49 80.3	6 0.12 1 0.06 3 0.00 - 5 0.01 0 0.07	2.16 4.55 19.58	14.63 2.08 0.45 10.79 - 0.06	9963.95 5936.26 150.38	0.94 0.00	0.42 0.42 0.02	2.75	0.60	3.19	0.68	0.01	0.02 0.02	0.52	740.87	0.14	0.01	691.9 52.4
TRACE CORVE ELECONSTRUCTION EAST MARCH LN TO EAST SWAIN D D D D D D D D D D D D D	5.56 21: 0.08 0: - 0.00 - 0.23 2' 5.86 24.4	51 77.1 20 0.5 - - 78 2.6 49 80.3	1 0.06 3 0.00 - - - - - - - - - - - - - - - - - -	2.16 4.55 19.58	2.08 0.45 10.79 - 0.06	5936.26 150.38 - 1.81	0.94	0.42 0.02	2.75	0.05	0.23	0.68	0.00	0.02	0.02	55.92		0.01	52.4
BD Sequences of the second se	0.08 0.: 0.00 - 0.23 <u>2'</u> 5.86 24.	20 0.5 - - 78 2.6 49 80.3	3 0.00 - <u>8 0.01</u> 0 0.07	4.55 19.58 1.74	0.45 10.79 - - 0.06	150.38 - 1.81	0.00	0.02						0.02	0.00		0.01		
BD Sequences of the second se	0.08 0.: 0.00 - 0.23 <u>2'</u> 5.86 24.	20 0.5 - - 78 2.6 49 80.3	3 0.00 - <u>8 0.01</u> 0 0.07	4.55 19.58 1.74	0.45 10.79 - - 0.06	150.38 - 1.81	0.00	0.02						0.02	0.00		0.01		
Gaptersta 5 Gaptersta 0 Gardnarving - Gardnarving - Total 322 25 Other Vehicles 0 0 Total 322 25 Stack Collector 0 0 Total 322 25 Stack Collector 0 0 Gardnarving - 0 Paring 0 0 Gardnarving 00 5 Gardnarving 00 5 Gardnarving 00 5 Gardnarving 0 0 Orisel Vehicle 0 0 Gardnarving 0 0 Paring 0 0 Gardnarving 0	0.08 0.: 0.00 - 0.23 <u>2'</u> 5.86 24.	20 0.5 - - 78 2.6 49 80.3	3 0.00 - <u>8 0.01</u> 0 0.07	4.55 19.58 1.74	0.45 10.79 - - 0.06	150.38 - 1.81	0.00	0.02						0.02	0.00		0.01		
Onise Valdes 90 Onise Valdes 90 Parkage 90 Parkage 90 Parkage 90 Stad 202 Stad 202 Stad 90	0.08 0.: 0.00 - 0.23 <u>2'</u> 5.86 24.	20 0.5 - - 78 2.6 49 80.3	3 0.00 - <u>8 0.01</u> 0 0.07	4.55 19.58 1.74	0.45 10.79 - - 0.06	150.38 - 1.81	0.00	0.02						0.02	0.00				
Poing	0.23 2' 5.86 24.	49 80.3	0 0.07	1.74	0.06		0.46							0.02	0.01 -	0.81	0.00	0.00	
Pasing	0.23 2' 5.86 24.	49 80.3	0 0.07				0.46	-			-	-					-	-	
Office Voldes 3022 S Tead 3022 S TRACK CURVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD * S University 5 S Onate Woldes * S Onate Woldes * S Other Woldes * S Other Woldes * S Stademotions * S Fail S S Radie Construction * * Other Woldes * S Stagement * S Stagement * S Staff Woldes * S Galar Woldes * S Staff Woldes * S	5.86 24.4	49 80.3	0 0.07				0.46			0.00 -							-	-	
TRACK CLEVE RECONSTRUCTION NOR TH OF NOR TH NEW HOP RD Faquement Faquement Faquement Faquement Paring Construction HAMMER LANS INFINI (FOR ADE A SUBJECT SU				28.03	13.38	6088.44		0.06	0.52	0.00	0.02	0.01	0.00	0.01	0.00	7.56	0.00	0.00	6.8
Barkbornst 95 Garkback 0 Garkback 0 Othisk Velack 0 Data Velack 0		sı					1.40	0.50	3.33	0.06	0.25	0.70	0.00	0.07	0.04	64.29	0.01	0.01	60.0
Onaise Vehicles 90 Graduatoring 90 Orikas Vehicles 90 Orikas Vehicles 90 Stagement 5 Bangment 90 Stagement 90 Orikas Vehicles 90 Graduatoria 90 Orikas Vehicles 90 Orikas Vehicles 90	111 211	51																	
Onaise Voldsich 0 Galankoving 1 Olitäs Voldsich 0 Olitäs Voldsich 2022 Stadioner 5 HAMMER LANI NEDINI UPGRADEI 5 Bagemennt 5 Bagemennt 0 Parini 0 Offast Voldsich 10 Galankowing 10 Onlitäs Voldsich 10 Offast Voldsich 10 Offast Voldsich 10 Offast Voldsich 10 Offast Voldsich 10			1 0.06	2.16	2.08	5936.26	0.94	0.42	2.75	0.05	0.23	0.68	0.00	0.02	0.02	55.92	0.01	0.01	52.4
Pasing 00 Ohles Vehicles 00 Discut Vehicles 00 Discut Vehicles 00 Discut Vehicles 00 Data Vehicles 00 Online Vehicles 00 Office Vehicles 00 Office Vehicles 00 Office Vehicles 00 Other Vehicle 00 Online Vehicle 00	0.08 0.3			4.55	0.45	150.38	0.00	0.02	0.07	0.00	0.00	0.00	0.00	0.02	0.00	0.81	0.00	0.00	0.7
Offste Vokske 00 Tabal LAMARE SDING UPGRADE N2 BLAMARE LANE SDING UPGRADE 0 Obait Vokske 0 Fanlander 0 Offast Vokske 0 Gaugeword 0 Gaugeword 0 Offast Vokske 0 Offast Vokske 0				19.58	10.79 -			-			-	-		0.02	0.01 -		-	-	
Teal 2022 55 HAMMER LANE SIDING UPGRADE Equipment 0 0 Onace Webcle 0 0 Onace Webcle 0 0 Onace Webcle 0 0 Other Webcle 0 0 Total 2021 55 FURKTION INFOG UPGRADE & EXTENSION 10 0 Data Webcle 0 0 Data Webcle 0 0 Data Webcle 0 0 Obace Webcle 0 0 Obace Webcle 0 0 Other Webcle 0 0 Other Webcle 0 0 Other Webcle 0 0	0.00 -				-					0.00 -							-	-	
IAAMER LANS ENDIN (FORADE 5 Supposed 5 Supposed 5 Supposed 5 Supposed 5 Other Velocity 5 Supposed 5 Suppos	0.23 2.1	78 2.6	5 0.01	1.74	0.06	1.81	0.46	0.06	0.52	0.00	0.02	0.01	0.00	0.01	0.00	7.56	0.00	0.00	6.8
Equipment 52 Gardanovita 0 Gardanovita 0 Total 0 Total 202 Total 202 Total 202 Total 202 Equipment 0 Dinact Vehicle 0 Data Vehicle 0	5.86 24.4	49 80.3	0 0.07	28.03	13.38	6088.44	1.40	0.50	3.33	0.06	0.25	0.70	0.00	0.07	0.04	64.29	0.01	0.01	60.0
Onise Valdes 0 Denise Onise Valdes 0 Dirite Valdes 0 Exall 2021 TRANTON SIDING (PGRADE & EXTENSION 0 Evaluation 2021 Evaluation 2021 Evaluation 2021 Evaluation 2021 Evaluation 2021 Evaluation 2021 Directories 2021 Evaluation 0 Paring 0 Ohite Valdes 0																			-
Earthanoving - Offida: Vehicle 0 Offida: Vehicle 0 Diffact Vehicle 223 DERENTIN STORONG UPGRADE & EXTENSION 5 Equipment 5 Galaxie Vehicle 0 Galaxie Vehicle 0 Galaxie Vehicle - Othick Vehicle 0	5.56 21.:			2.16	2.08	5936.26	0.94	0.42	2.75	0.11	0.47	1.37	0.00	0.05	0.04	111.83	0.02	0.01	104.8
Pening 0 Difac Valcie 0 Teal TRANSIDING LPGRADE & EXTENSION 2 Equations 1 Much Valcie 0 Duch Valcie 0 Pening 0 Pening 0 Difac Valcie 0 Difac Valci	0.08 0.3	20 0.5	3 0.00	4.55	0.45	150.38	0.00	0.02	0.07	0.00	0.00	0.01	0.00	0.05	0.00	1.63	0.00	0.00	1.4
Offake Velacies 0 Total 2023 5 THORNTON SIDDIG UPGRADE & EXTENSION 2 5 Scaphener 5 5 Onake Velacies 0 6 Janthanoving - - Pening 0 0 Otake Velacies 0 0	-	-	-	19.58	10.79 -	-		-						0.03	0.02 -		-	-	
Teal 2021 25 TRORNTON SIDING UPGRADE & EXTENSION - Equipment 5 Datas Vehicle 0 Parting - Parting - Parting 0 Others Vehicle 0	0.00 -	-	-		-	-		-		0.00 -			-				-	-	
DROWTON SUDIQ UPGRADE & EXTENSION 5 Regiment 5 Onsite Vehicles 0 Bathnoving - Paring 0 Other Vehicles 0	0.23 2.1			1.74	0.06	1.81	0.46	0.06	0.52	0.00	0.03	0.03	0.00	0.02	0.01	15.12	0.00	0.00	13.7
Enujment 5 Onsite Vehicles 0 Lenthmoving - Paving 0 Oklike Vehicles 0	5.86 24.4	49 80.3	0 0.07	28.03	13.38	6088.44	1.40	0.50	3.33	0.11	0.50	1.40	0.00	0.15	0.07	128.58	0.02	0.01	120.0
Onsie Vehicles 0 Earthmoving - Paving 0 Offsie Vehicles 0																			
Earthmoving - Paving 0 Offsice Vehicles 0	5.56 21.5			2.16	2.08	5936.26	0.94	0.42	2.75	0.22	0.93	2.73	0.00	0.09	0.09	223.66	0.05	0.02	209.6
Paving 0 Offsite Vehicles 0	0.08 0.3	20 0.5	3 0.00	4.55	0.45	150.38	0.00	0.02	0.07	0.00	0.00	0.01	0.00	0.10	0.01	3.26	0.00	0.00	2.9
Offsite Vehicles 0	-	-	-	20.42	10.89 -			-			-	-		0.07	0.04 -		-	-	
	0.03 -	-	-		-	-	-	-		0.00 -	-	-	-		-		-	-	
	0.23 2.1			1.74	0.06	1.81	0.46	0.06	0.52	0.00	0.06	0.05	0.00	0.04	0.01	30.24	0.00	0.00	27.4
Total 2023 5.	5.89 24.4	49 80.3	0 0.07	28.87	13.48	6088.44	1.40	0.50	3.33	0.22	1.00	2.80	0.00	0.30	0.14	257.16	0.05	0.02	240.0
LODI SIDING																			
	5.56 21.5			2.16	2.08	5936.26	0.94	0.42	2.75	0.44	1.87	5.46	0.00	0.19	0.18	447.32	0.09	0.04	419.3
Onsite Vehicles 0		20 0.5	3 0.00	4.55	0.45	150.38	0.00	0.02	0.07	0.00	0.01	0.02	0.00	0.20	0.02	6.52	0.00	0.00	5.9
Earthmoving -	0.08 0.3	-	-	20.65	10.92 -	-	-	-			-	-		0.13	0.07 -		-	-	
	0.08 0.3		-		-	-	-	-		0.00 -	-	-	-		-		-	-	
	0.08 0.: 0.11 -			1.74	0.06	1.81	0.46	0.06	0.52	0.01	0.12	0.12	0.00	0.08	0.02	60.48	0.00	0.01	54.8
	0.08 0.: 0.11 - 0.23 2.'			29.10	13.51	6088.44	1.40	0.50	3.33	0.45	1.99	5.60	0.01	0.60	0.29	514.31	0.10	0.05	480.1
Max Daily / Annual 2021 16.1	0.08 0.: 0.11 - 0.23 2.' 5.98 24.	49 80.3		61.35	28.14	16,052.39	3.41	1.23	8.63	1.05	5.18	11.42	0.01	1.77	0.81	1,255.18	0.24	0.13	1,172.11
2022 11.5	0.08 0.: 0.11 - 0.23 2: 5.98 24.4 6.14 69.0	49 80.3 77 184.06			26.76	12.176.89	2.80	1.01		0.11	0.50	1.40	0.00	0.15	0.07	128.58	0.02	0.01	120.03
2023 11.5	0.08 0.: 0.11 - 0.23 2: 5.98 24. 6.14 69.0 1.73 48.9	49 80.3 17 184.06 18 160.60	0.15	56.05					6.67				0.00	0.44	0.22	385.74	0.07	0.04	360,05
SJVAPCD Thresholds 100.0	0.08 0.: 0.11 - 0.23 2.' 5.98 244 6.14 69.0 1.73 48.9 1.76 48.9	49 80.3 7 184.06 8 160.60 8 160.60	0.15	56.90	26.86	12,176.89	2.80	1.01	6.67 6.67	0.34	1.50	4.20							
Emissions Exceed Thresholds? No	0.08 0.: 0.11 - 0.23 2.' 5.98 24.4 6.14 69.0 1.73 48.9 0.00 100.0	49 80.3 7 184.06 8 160.60 8 160.60	0.15				2.80	1.01			1.50 100.00	4.20 10.00	27.00 No	15.00	15.00				

Construction Emissions by Location					Daily	Emissions (lb/da	iy)				Daily Emissions (metric tons/day)				Max An	mual Emissic	ns (tons/year)				Total Emissions (metric tons)
Project Element Constr	ction	ROG	со	NOX	SO2	PM10	PM2.5	C02	CH4	N20	CO2e	ROG	со	NOX	SO2	PM10 (Total)	PM2.5 (Total)	CO2	CH4	N20	CO2e
ELK GROVE STATION ACCESS (New Intersection West of Existing)	-																				
Equipment Onsite Vehicles	-	2.15				4.53	0.38				4.79								0.12		476.64
Equipment Onsite Vehicles		5.56 0.08	21.51 0.20	77.11 0.53	0.06	2.16 4.55	2.08	5,936.26 150.38	0.94	0.42 0.02	2.75	0.11 0.00	0.47	1.37	0.00	0.05	0.04	111.83 1.63	0.02	0.01	104.84 1.48
Earthmoving	-		-	-	-	19.58	10.79	-	-			-	-			0.03	0.02	-	-		-
Paving Offsite Vehicles		0.00	- 2.78	- 2.65	- 0.01	- 1.74	- 0.06	- 1.81	0.46	0.05	0.52	0.00	- 0.03	- 0.03	- 0.00	. 0.02	- 0.01	15.12	0.00	0.00	13.72
Total 2023		5.86	2.78	2.65	0.01	28.03	13.38	6.088.44	1.40	0.05	3.33	0.00	0.03	1.40	0.00		0.01	15.12	0.00	0.00	13.72
	021	37.11	158.22	391.57	0.07	126.50	57.52	6,088.44 35,980,29	7.43	2.68	3.33 19.23	2.41	11.59	27.28	0.00	3,45	1.61	2,837,48	0.02	0.01	2,648.97
	021	11.73	48.98	160.60	0.45	56.06	26.76	12.176.89	2.80	1.01	6.67	0.11	0.50	1.40	0.00	0.15	0.07	128.58	0.02	0.01	120.03
	2023	36.06	162.62	448.41	0.46	141.79	68.69	38,193.23	8.22	2.96	20.60	1.84	8.85	21.35	0.02	2.58	1.19	2,204.53	0.40	0.20	2,056.06
SMAQMD Thresh	olds			85.00	-	80.00	82.00									14.60	15.00				1,100.00
Emissions Exceed Thresh	olds?	-	-	Yes	-	Yes	No	C02	CH4	N20	CO2e		-	-		No	No	- CO2	CH4	- N20	Yes CO2e
	2021 2022 2023 Total							52,032.68 24,353.78 50,370.12	10.84 5.60 11.03	3.90 2.01 3.96	27.87 13.34 27.27							4093 257 2590 6940	0.76 0.05 0.47 1.28	0.40 0.02 0.24 0.67	3821 240 2416 6477

OM OM OM OM OM <th></th> <th></th> <th></th> <th></th> <th></th> <th>Mitigated D</th> <th>aily Emission</th> <th>ıs (lb/day)</th> <th></th> <th></th> <th></th> <th>taily Emissions netric tons/day)</th> <th></th> <th></th> <th></th> <th></th> <th>Mit</th> <th>tigated Maxim</th> <th>um Annual Er</th> <th>missions (ton</th> <th>s/year)</th> <th></th> <th></th> <th></th> <th></th> <th>Total Emissions (metric tons)</th>						Mitigated D	aily Emission	ıs (lb/day)				taily Emissions netric tons/day)					Mit	tigated Maxim	um Annual Er	missions (ton	s/year)					Total Emissions (metric tons)
Image: state																		PM10			PM2 5	PM2.5				
OM OM OM OM OM <td>1.00</td> <td>a</td> <td>ROG</td> <td>co</td> <td>NOX</td> <td>SO2</td> <td>PM10</td> <td>PM2.5</td> <td>CO2</td> <td>CH4</td> <td>N20</td> <td>CO2e</td> <td>ROG</td> <td>co</td> <td>NOX</td> <td>SO2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>CO2</td> <td>CH4</td> <td>N20</td> <td>CO2e</td>	1.00	a	ROG	co	NOX	SO2	PM10	PM2.5	CO2	CH4	N20	CO2e	ROG	co	NOX	SO2							CO2	CH4	N20	CO2e
Normal weights Normal	roject Element ODI STATION	Construction Start Year															Dust)			Dust)						
BA I	pment				10.05	0.10	0.00	0.10	0825.00	1.10	0.52		0.00	0.05	0.60	0.01		0.01	0.01		0.04	0.04	505.40		0.04	
No. No. <td>Vehicles</td> <td></td> <td>- 0.1601</td> <td></td> <td></td> <td>0.0166</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Vehicles																- 0.1601			0.0166						
N. M. C. M. A. M.	he venes		0.12	0.30								0.10									0.0011					12.23
bit b	ing		1.48 -																							
Norm Norm <th< td=""><td>ite Vehicles</td><td></td><td></td><td>4.52</td><td>3.05</td><td>0.02</td><td>2.31</td><td>0.07</td><td>2 39</td><td>0.61</td><td>0.07</td><td>0.68</td><td>0.02</td><td>0.25</td><td>0.30</td><td></td><td></td><td></td><td></td><td>0.0485</td><td>0.0071</td><td>0.06</td><td>141.98</td><td>0.00</td><td>0.01</td><td>128.8</td></th<>	ite Vehicles			4.52	3.05	0.02	2.31	0.07	2 39	0.61	0.07	0.68	0.02	0.25	0.30					0.0485	0.0071	0.06	141.98	0.00	0.01	128.8
Normal series 1.3 4.17 5.0 0.3 0.3 0.3 <	1	2021	3.21	49.09	16.90	0.12	13.29	4.79	9963.95	2.01	0.72	5.30	0.16	3.22	0.85	0.01	0.49	0.02	0.52	0.15	0.02	0.17	740.90	0.14	0.08	691.95
Name 13 41.7 15.7 <th< td=""><td>I STATION - SOUTH ALTERNATIVE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	I STATION - SOUTH ALTERNATIVE												1													
N N	ment		1.31	44.27	13.05	0.10	0.20	0.19	9735.88	1.40	0.63	4.52	0.08	2.95	0.50	0.01	-	0.01	0.01 -		0.01	0.01	585.40	0.14	0.06	550.9
Horizon Horizon <t< td=""><td>e Vehicles</td><td></td><td>0.12</td><td>0.30</td><td>0.79</td><td>0.00</td><td>3.00</td><td>0.31</td><td>225.68</td><td>0.01</td><td>0.03</td><td>0.10</td><td>0.01</td><td>0.02</td><td>0.05</td><td>0.00</td><td>0.1591</td><td>0.0012</td><td>0.16</td><td>0.0155</td><td>0.0011</td><td>0.02</td><td>13.51</td><td>0.00</td><td>0.00</td><td>12.25</td></t<>	e Vehicles		0.12	0.30	0.79	0.00	3.00	0.31	225.68	0.01	0.03	0.10	0.01	0.02	0.05	0.00	0.1591	0.0012	0.16	0.0155	0.0011	0.02	13.51	0.00	0.00	12.25
bi bi< bi <td>noving</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>7.88</td> <td>4.23 -</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>0.15 -</td> <td>-</td> <td>0.15</td> <td>0.08 -</td> <td></td> <td>0.08 -</td> <td></td> <td></td> <td>-</td> <td></td>	noving	-	-	-		-	7.88	4.23 -	-		-		-				0.15 -	-	0.15	0.08 -		0.08 -			-	
Math Math <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				-																						
VINE ECONFLECTION LAT MACH LA TO LAT MACH LAT	· Vehicles																									
bit bit <td></td> <td>2021</td> <td>3.43</td> <td>49.09</td> <td>16.90</td> <td>0.12</td> <td>13.38</td> <td>4.80</td> <td>9963.95</td> <td>2.01</td> <td>0.72</td> <td>5.30</td> <td>0.17</td> <td>3.22</td> <td>0.85</td> <td>0.01</td> <td>0.50</td> <td>0.02</td> <td>0.52</td> <td>0.15</td> <td>0.02</td> <td>0.17</td> <td>740.90</td> <td>0.14</td> <td>0.08</td> <td>691.9</td>		2021	3.43	49.09	16.90	0.12	13.38	4.80	9963.95	2.01	0.72	5.30	0.17	3.22	0.85	0.01	0.50	0.02	0.52	0.15	0.02	0.17	740.90	0.14	0.08	691.9
See 1	X CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN																									
Base of the sector of	ment		0.85	22.27	10.02	0.06	0.14	0.13	5936.26	0.94	0.42	2.75	0.01	0.23	0.07	0.00	-	0.00	0.00 -		0.00	0.00	55.94	0.01	0.01	52.4
No. No. <td>Vehicles</td> <td></td> <td>0.08</td> <td></td> <td>0.53</td> <td>0.00</td> <td>1.96</td> <td></td> <td>150.38</td> <td>0.00</td> <td>0.02</td> <td>0.07</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.81</td> <td>0.00</td> <td>0.00</td> <td></td>	Vehicles		0.08		0.53	0.00	1.96		150.38	0.00	0.02	0.07	0.00	0.00	0.00	0.00							0.81	0.00	0.00	
bit	oving	-	-			-	7.64	4.21 -	-		-		ŀ		-		0.01 -	-	0.01	0.00 -		0.00 -				
Since in the second s				-																						
Normal sectors shall normalize in a sector shall normal sectors	/ehicles																									
bit 0.01 0.22 0.02 0.02 0.04 0.01 0.02 0.01 0.00		2022	1.15	25.25	13.21	0.07	11.48	4.61	6088.44	1.40	0.50	3.33	0.01	0.25	0.08	0.00	0.03	0.00	0.03	0.01	0.00	0.01	64.32	0.01	0.01	60.0
shale base base </td <td>URVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD</td> <td></td>	URVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD																									
Norm Norm <th< td=""><td></td><td></td><td>0.85</td><td>22.27</td><td>10.02</td><td>0.06</td><td>0.14</td><td>0.13</td><td>5936.26</td><td>0.94</td><td>0.42</td><td>2.75</td><td>0.01</td><td>0.23</td><td>0.07</td><td>0.00</td><td>-</td><td>0.00</td><td>0.00 -</td><td></td><td>0.00</td><td>0.00</td><td>55.94</td><td>0.01</td><td>0.01</td><td>52.4</td></th<>			0.85	22.27	10.02	0.06	0.14	0.13	5936.26	0.94	0.42	2.75	0.01	0.23	0.07	0.00	-	0.00	0.00 -		0.00	0.00	55.94	0.01	0.01	52.4
Normal bias	les		0.08	0.20	0.53	0.00	1.96	0.20	150.38	0.00	0.02	0.07	0.00	0.00	0.00	0.00	0.0106	0.0001	0.01	0.0010	0.0001	0.00	0.81	0.00	0.00	0.74
bit bit 0.10 0	ng	-	-	-		-	7.64	4.21 -	-		-		-				0.01 -	-	0.01	0.00 -		0.00 -			-	
Singent (FigAck) Singent (FigAck)<				-																						
AND SIGNON (FGRADE Description (FGRADE <thdescription (fgrade<="" th=""> Description (FGRADE</thdescription>	hicles																									
No. 10.00 0.00 2.27 10.02 0.06 0.14 0.13 599.25 0.04 0.42 2.27 10.02 0.00 11.14 0.00		2022	1.15	25.25	13.21	0.07	11.48	4.60	6088.44	1.40	0.50	3.33	0.01	0.25	0.08	0.00	0.03	0.00	0.03	0.01	0.00	0.01	64.32	0.01	0.01	60.0
ses 0.0 <td></td>																										
Single	nt																-									
Non- Non- <th< td=""><td>/ehicles</td><td></td><td>0.08</td><td>0.20</td><td>0.53</td><td>0.00</td><td></td><td></td><td></td><td>0.000</td><td></td><td>0.07</td><td></td><td></td><td></td><td>0.00</td><td></td><td>0.0001</td><td></td><td></td><td>0.0001</td><td></td><td></td><td></td><td></td><td>1.48</td></th<>	/ehicles		0.08	0.20	0.53	0.00				0.000		0.07				0.00		0.0001			0.0001					1.48
bit bit 0.3 2.8 2.0 0.01 1.10 0.46 0.47 0.46 0.47 0.46 0.47 0.46 0.47	wing	-		-		-												-								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ehicles			2.76								0.00														10.00
SIBURO LIPEGADE & EXTENSION Description Description <thdescription< th=""> Description <thdescript< td=""><td>SHORE A</td><td>3022</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdescript<></thdescription<>	SHORE A	3022																								
bes 0.8 2.27 10.02 0.66 0.14 0.13 998/25 0.42 0.27 0.00 - 0.00 <	ON SIDING LIDGRADE & EXTENSION	and and a second s	1.1./	ليدرينه	1.5.41	0.07	11.70	7.01	0000.44	1.40	0.50	3.33	0.02	0.47	9.17	0.00	0.03	0.00	0.00	0.04	0.00	0.04	00.00	0.02	0.01	.2000
bit 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00	ON SIDING UPGRADE & EXTENSION		0.85	22.27	10.02	0.05	0.14	0.13	5926.26	0.94	0.42	2.75	0.03	0.92	0.27	0.00		0.00	0.00		0.00	0.00	222.69	0.05	0.02	209.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/ehicles																			0.0041						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	oving			5.20								0.07														2.70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100 A		0.03																							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	/ehicles			2.78	2.65	0.01						0.52									0.0013	0.01			0.00	27.4
bits 2.27 10.02 0.65 0.14 0.13 599.25 0.94 0.42 2.52 0.05 0.16 0.01 - 0.01 0.01 - 0.01 447.35 0.09 0.04 449.35 bes - - - - - - - 0.01 0.01 0.01 - 0.01 447.35 0.09 0.04 449.35 bes - - - - - - - 0.01 0.01 0.01 0.01 0.01 40.35 0.09 0.04 449.35 bes - - - - - - - 0.01 <td< td=""><td></td><td>2023</td><td>1.18</td><td>25.25</td><td>13.21</td><td>0.07</td><td>12.32</td><td>4.71</td><td>6088.44</td><td>1.40</td><td>0.50</td><td>3.33</td><td>0.04</td><td>0.99</td><td>0.34</td><td>0.00</td><td>0.1073</td><td>0.0062</td><td>0.1136</td><td>0.028</td><td>0.006</td><td>0.034</td><td></td><td></td><td>0.02</td><td>240.0</td></td<>		2023	1.18	25.25	13.21	0.07	12.32	4.71	6088.44	1.40	0.50	3.33	0.04	0.99	0.34	0.00	0.1073	0.0062	0.1136	0.028	0.006	0.034			0.02	240.0
bits 2.27 10.02 0.65 0.14 0.13 599.25 0.94 0.42 2.52 0.05 0.16 0.01 - 0.01 0.01 - 0.01 447.35 0.09 0.04 449.35 bes - - - - - - - 0.01 0.01 0.01 - 0.01 447.35 0.09 0.04 449.35 bes - - - - - - - 0.01 0.01 0.01 0.01 0.01 40.35 0.09 0.04 449.35 bes - - - - - - - 0.01 <td< td=""><td>ING</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	ING																									
bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							0.14										-									
Operation Operation <t< td=""><td>icles</td><td></td><td>0.08</td><td>0.20</td><td>0.53</td><td>0.00</td><td></td><td></td><td>150.38</td><td>0.00</td><td>0.02</td><td>0.07</td><td>0.00</td><td>0.01</td><td>0.02</td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td>6.52</td><td>0.00</td><td>0.00</td><td>5.91</td></t<>	icles		0.08	0.20	0.53	0.00			150.38	0.00	0.02	0.07	0.00	0.01	0.02	0.00							6.52	0.00	0.00	5.91
bit 0.3 2.7i 2.65 0.01 1.7i 0.06 1.8i 0.46 0.05 0.2i 2.0i 0.0i 0.0i 5.8i 120 120 120 125 1.0i 1.0i <td>g</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>8.71</td> <td>4.34 -</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>ŀ</td> <td></td> <td></td> <td></td> <td>0.06 -</td> <td></td> <td>0.05</td> <td>0.03 -</td> <td></td> <td>0.03 -</td> <td></td> <td></td> <td></td> <td></td>	g					-	8.71	4.34 -	-		-		ŀ				0.06 -		0.05	0.03 -		0.03 -				
Jact Lis 252 1131 0.07 1253 4.74 0.984 1.40 0.99 3.32 0.98 1.97 0.68 0.01 0.22 0.01 0.23 0.56 0.01 0.21 0.56 0.01 0.01 0.23 0.56 0.01 0.01 0.21 0.56 0.01 0.01 0.21 0.56 0.01 0.01 0.51 0.56 0.01 0.51 0.56 0.01 0.51 0.56 0.01 0.51 0.56 0.01 0.51 0.56 0.01 0.55 0.56 0.01 0.55 0.56 0.01 0.51 0.56 0.01 0.51 0.56 0.01 0.55 0.56 0.01 0.55 0.56 0.01 0.55 0.56 0.01 0.55 0.56 0.01 0.55 0.56 0.57 0.56 0.61 0.55 0.56 0.61 0.56 0.61 0.56 0.61 0.56 0.61 0.56 0.65 0.65																										
Annual 2021 4.7% 74.34 30.11 0.19 25.93 9.54 16.052.29 3.41 1.23 8.63 0.24 5.19 1.53 0.01 0.71 0.03 0.75 0.20 0.03 0.23 1.255.24 0.24 0.11 1.772.11 2022 2.21 50.49 0.47 5.26 0.01 0.01 2023 1255.24 0.24 0.11 1.772.11 2022 2.21 50.49 0.47 5.26 0.21 1.217.059 2.80 1.01 6.67 0.02 0.49 0.17 0.00 0.05 0.00 0.03 0.23 1.255.24 0.24 0.11 1.701.35 2022 2.21 50.49 0.67 0.62 0.49 0.17 0.00 0.05 0.00 0.05 0.00 0.02 1.255.24 0.24 0.11 1.701.35 2012 2.14 50.49 0.67 0.06 0.48 0.61 0.01 0.01 0.02<	hicles											0.52														
1022 2.13 50.49 50.42 0.15 2.25 9.21 12.77.69 2.80 1.01 6.67 0.02 0.49 0.17 0.00 0.45 0.00 0.66 0.01 0.00 0.02 12.84.3 0.02 0.11 120.03 1023 2.24 50.49 1.05 2.55 9.01 120.03							1.8550					0.000			0100	0.001									0100	
2023 2.34 50.49 26.42 0.15 23.80 9.31 12.176.89 2.80 1.01 6.67 0.06 1.48 0.51 0.00 0.16 0.01 0.17 0.04 0.01 0.05 385.79 0.07 0.04 360.09	taily / Annual																									
									12,176.89	2.80	1.01	6.67					0.16	0.01		0.04	0.01		385.79	0.07	0.04	360.09
SUVACD Threshold 10:00 00:00 10:00																41.00										

Construction Emissions by Location					Mitigated I	Daily Emission	us (Ib/day)				Daily Emissions (metric tons/day)						litigated Maxi	mum Annu		(tons/year)					Total Emissions (metric tons)
Project Element	Construction Start Year	ROG	со	NOX	SO2	PM10	PM2.5	CO2	CH4	N20	CO2e	ROG	со	NOX	SO2	PM10 (Fugitive	PM10 (Exhaust)	PM10 (Total)	PM2.5 (Fugitive	PM2.5 (Exhaust)	PM2.5 (Total)	CO2	CH4	N20	CO2e
Project Element ELV. GROVE STATION ACCESS (New Interaction West of Existing)	Construction Start Year															Dust)			Dust)						
		0.63		0.10	0.04	0.07	0.03	3851-34	0.04	0.42	1.00	0.07		0.00	0.01		0.01	0.04		0.01	0.04	505.62	0.14	0.07	104.44
Equipment Onsite Vehicles		9,04	22.32	3.40		1.64	0.07	133.91	0.94 000	0.42	4.79		2.64	0.38	0.01	- 01444		0.01		0.01	0.01	12.51	0.12	0.06	476.64
Equipment			22.27	10.02	0.06	4.64	0.13	5936.26	0.94	0.42	2.75	0.02	0.45		0.00		0.00			0.00	0.00	111.86	0.02	0.01	104.84
Onsite Vehicles		0.85	0.20	0.53	0.00	1.96	0.13	150.38	0.94	0.42	2.75	0.02	0.46	0.13	0.00	- 0.0211	0.0001	0.02		0.0001	0.00	1.63		0.01	1.48
Earthmoving		0.08	0.20	0.53	0.00	7.64	4.21 -	150.38	0.00			0.00	0.00	0.01	0.00	0.0211	0.0001	0.02	0.0021	0.0001	0.00	1.63	0.00		
Paving		0.00 -	-			7.64	4.21 -				-					0.01	-	0.01	0.01	-	0.01 -				
Offsite Vehicles		0.00 -	2.78		-	1 74	0.05				-	0.00	- 0.03	- 0.03	. 0.00	-	- 0.0007	-	0.0049	-		15.12		0.00	
	2023		25.25	2.65	0.01	11.74		1.81 6.088.44	0.46	0.06	0.52	0.00		0.03		0.0188		0.02	0.0049	0.0007	0.01	128.60	0.00	0.00	13.72
		1.15					4.61		1.40	0.50			0.49		0.00	0.05	0.00	0.05							120.03
Max Daily / Annual	2021	12.22	172.53	63.91	0.43	53.34	19.25	35,980.29	7.43	2.68	19.23	0.50	11.77	3.44	0.03	1.30	0.07	1.37	0.34	0.07	0.41	2,837.59	0.53	0.27	2,648.97
	2022	2.31	50.49	26.42	0.15	22.96	9.21	12,176.89	2.80	1.01	6.67	0.02	0.49	0.17	0.00	0.05	0.00	0.06	0.01	0.00	0.02	128.63	0.02	0.01	120.03
	2023	8.48	173.93	73.43	0.46	60.96	23.40	38,193.23	8.22	2.96	20.60	0.37	9.09	2.71	0.02	0.96	0.05	1.01	0.25	0.05	0.30	2,204.66	0.40	0.20	2,056.06
	SMAQMD Thresholds			85.00		80.00	82.00					-	-	-				14.60	-		15.00			-	1,100.00
	Emissions Exceed Thresholds?			No		No	No											No			No				Yes
								C02	CH4	N20	CO2e											CO2	CH4	N20	CO2e
Maximum Annual GHG Emissions Acorss Entire Project Alignment:	2021							52.032.68	10.84	3.90	27.87											4.092.82	0.762	0.401	3.821.08
	2022							24,353,78	5.60	2.01	13.34											257.26	0.048	0.024	240.06
	2023							50.370.12	11.03	3.96	27.27											2.590.45	0.467	0.241	2,416.15
	Total							126757	27	10	68											6941	1	1	6477
	1000																								

Project Construction Data Input			1																									
	•																91	roject Element										-
												nons									TRA	OX IMPROVEMENTS						
DESCRIPTION OF EQUIPMENT	Construction Timing	EMPLOYEES PER	HRS/DAY	EQUIPMENT LOAD FACTOR (engine operation)	Onsite Miles/Day (vehicles only)	Offsite Miles/Day (whicles only)	UNITS	LODI STATION	LODI STATION - SOUTH	SLK-GROVE STATION ACCESS- (New Interaction- West of Existing)	ELK GROVE STATION ACCESS- (Fourth Leg of- Existing Internection)	CITY COLLEGE	MIDTOWN SACRAMENTO STATION	OLD NORTH SACRAMENTO STATION		EAST MARCH UN	TRACK CURVE RECONSTRUCTION NORTH OF NORTH	TRACK CURVE RECONSTRUCTION SOUTH OF DESMOND RD	TRACK CURVE RECONSTRUCTION NORTH OF ELK GROVE STATION	HAMMER LANE	THORNTON SIDING UPGRADE & EXTENSION	PHILUPS SIDING UPGRADE & EXTENSION	POLLOCK SIDING	SOUTH SACRAMENTO SIDING UPSRADE	DEL PASO SIDING UPGRADE & EXTENSION		ELK-GROVE GIDING	NEW CROSSOURE
																												-
REFERENCE CODING																												
CORRIDOR WORK SITE LENGTH							UF					2200	7200	0	4210	1120	970	1411	1080	12020	10580	6770	5220	14110	20035	18000	10260	325
TRACK WORK LENGTH							TF	525	525			2200	1900	0	6730	1120	970	1411	1080	12020	10580	6770	5220	20940	20035	18000	10250	325
PARKING SPACES								278	236	300	200	0	0	252	149													
PROJECT CONSTRUCTION DURATION FOR EACH PROJECT ELEM	ENT						Months	14	14	14	#	8	12	14	12	1	1	1	1	2	4	2	2	4	12	8	÷	2
START CONSTRUCTION							YEAR	2021	2021	2025	2025	2023	2021	2023	2021	2022	2022	2022	2022	2023	2023	2021	2023	2023	2021	2021	2025	2023
SITE WORK PHASE							MONTHS	12	12	12	12	4	10	10	8	0.5	0.5	05	0.5	1	2	1	1	1	6	4	2	1
	Initial Site Work - Prior to other const.														-													
GRADER	activity Initial Site Work - Prior to other const.	1	7	0.6																								<u> </u>
WATER TRUCK (100% onsite)	activity	1	7	0.5	3	0																						
D6 DOZER	Initial Site Work - Prior to other const. activity	2	7	0.7																								1 I
	Initial Site Work - Prior to other const. activity			0.6																								
D 8 DOZER	Latter Portion of Site Work Phase	1	6	0.6																								+
RENTAL DUMP TRUCKS (50% onsite/50% offsite)	Eatter Portion of Site Work Phase	4	Å	0.6	2	63																						
		11																										()
RAIL WORK PHASE							MONTHS	1	1	6	8	4	4	4	4	0.5	0.5	0.5	0.5	1	2	1	1	3	6	4	2	1
LOCOMOTIVE (switch, 1200-1500 HP) D6 D02ER	Latter Portion of Rail Work Phase First Portion of Rail Work Phase	2	5	0.4																								
GRADER	First Portion of Rail Work Phase		6	0.5																								
WATER TRUCK (100% onsite)	First Portion of Rail Work Phase	2	6	0.5	3	0																						
TAMPER (max 100 HP)	Latter Portion of Rail Work Phase	1	4	0.4																								1
ALLIGNER (max 100 HP)	Latter Portion of Rail Work Phase	1	4	0.4																								
SWINGER (max 50 HP) WELDERS	Latter Portion of Rail Work Phase Latter Portion of Rail Work Phase	1 3	5	0.3																								
FLAT BED TRUCK (75% onsite/25% offsite)	Eatter Portion of Rail Work Phase	3		0.5	2	22																						
PICKUPS (50% onsite/50% offsite)	Entire Rail Work Phase	3	Á	0.5	3	35																						
SUV (100% onsite)	Entire Rail Work Phase	2	5	0.5	3	0																						
35 TON RT CRANE	Latter Portion of Rail Work Phase	1	5	0.6																								1
FLAT BED TRACTOR (75% onsite/25% offsite) WHEEL LOADER	Entire Rail Work Phase	1	4	0.25	2	2																						
WHEEL LUNDER	First Portion of Rail Work Phase	1	5	u.45		1								1			1							1				
STRUCTURAL WORK PHASE		49		1			MONTHS	6	6	6	4	3	3	6	3	0	0	0	0	0	0	0	0	0	6	0	4	0
GENERATOR	Entire Structural Work Phase	2	2	0.8																								
75 T MOBILE CRANE	Entire Structural Work Phase	1	5	0.6								-			_													+
WATER TRUCK (100% onsite) FLAT RED TRUCK (25% onsite/25% official	Entire Structural Work Phase Entire Structural Work Phase	1	4	0.4	3	0																						
FLAT BED TRUCK (75% onsite/25% offsite) PICKUPS (50% onsite/50% offsite)	Entire Structural Work Phase Entire Structural Work Phase	1	4	0.5	2	18				-				1														
PICKUPS (50% onsite/50% offsite) CONCRETE MORERS_DELIVERY (100% onsite)	Entire Structural Work Phase Entire Structural Work Phase	3	7	0.6	3	74								1			1							1				
CONCRETE PUMP	Entire Structural Work Phase	1	7	0.2		l č	1							1					1	1				1	1		1	
WHEEL LOADER	Entire Structural Work Phase	4	4	0.4																								
WELDERS	Entire Structural Work Phase	2	5	0.5																								
CLEAR & GRUBBING		24					4CBFS		12	"				· .			0		-							12	2	
CLEAR & GRUBBING FARTHWORK				1		-	ACRES	9 16310	13 35990	51480	45185	2200	3820	7850	18500	200	150	250	200	0	38800	27900	ŝ	0	149200	12 100000	56010	0
PAVED AREAS	i .			1			S.F.	200000		650000	570000	2200	150000		23800	200	150	250	200	0	1400	1400	ő		9200	100000		0
DEMOLITION							S.F.	0	0	0	0	0	85000	155000	180000	0	0	0	0	1000	1400	1400	1000	0	9200	10070	2400	1000
Average onsite speed (mph)																												<u> </u>
Average criste speed (mph) Average offsite speed (mph)		3		1		-								1			1							1				
Lange and the second seco																												

at Exhaust Emissions

Project Specific Equipment (Califordial equivalent) ¹	Construction Timing	#/Day	Operational hours / day	Homponer ² Los	ad Factor				issian Factors (g/bp					Daily Emissio				Duly Eniorine (metric tracellar)			Mitigated Fat	sion Factors (glip-le					Mig	ated Duily Emissi	ions (Briday)				Daily Emissions (metric toncillay)
						ROG	co	NOX	SO2 PM10	PM2.5 CO2 C	H4 N2O	RDG CO	NOX	502 PM	10 PM2.5	C02 0	344 N20	C03h	80G	CO NO	K 502	PM10 PM	2.5 CO2	CH1 N20	20G	0	NOX 502	PM1	10 PM2.5	C02	C344	N20	007
STIE WORK PHASE																																	
GRADER (gadas)	Initial Site Work - Prior to other const. activity		2	187	0.41	0.325	1.30687	4.38134	0.005 0.129	0.128 475 6	15 0.07	0.40 1	5.18	0.60	16 0.11	563	0.18 0.28	6.27	0.06	2.2 0.2	6 0.005	0.008 0.0	474.539	0.153 0.069	0.0	2.603	0.308 0.00	-	0.009	561.47	4 0.181	0.051	0.24
Di DOZER (shiher tind dowr)	Initial Site Work - Prior to other const. activity	2	2	247	0.4	0.6	2.31719	6.29617	0.005 0.306	0.251 475 6	15 0.07	1.89 2	17 29.20	0.62 6	.59 0.84	1445	0.47 0.21	0.69	0.06	2.2 0.2	6 0.005	0.008 0.0	474.2%	0.154 0.069	0.1	\$3 6.799	0.793 0.0	IS .	0.024	1447.89	6.470	0.211	0.691
DS DOZER (rubber field disser)*	Initial Site Work - Prior to other const. activity	1	6	354	0.4	0.482	4.04007	5.081	0.005 0.232	0.214 479 6	16 0.07	0.92 2	9.52	0.00	43 0.40	897	0.29 0.13	0.43	0.06	2.2 0.2	6 0.005	0.008 0.0	475.987	0.155 0.070	0.1	4.121	0.487 0.00		0.015 0.005	\$ 897.14	6 0.290	0.171	0.421
Phase Total	Later Portion of Sile Work Phase												18 22.90	1 100	53 141		0.94 0.42	1.39			2 8.005						1.507 6.65	v	6.049 0.049	2066.525		6.422	2.365
COMPACIOR (shee competer) Phase Total	Labor Portion of Sile Work Phase	2			0.67	0.661	2.009	4.142	0.000 0.060	0.162 558 6	00 00	0.06 0	0.0	0.00 0	00 000	52	0.01 0.00	0.02	0.661	2497 415	0.00	0.01	61 568.299	0.059 0.027	0.0	60 0.316			6015 0005	51.72	9 0.005	6.002	0.02
RAL WORK PHASE		1		1 1	_		1	_			1	0.0 0	0.00	0.00' 0	AV 0.57	1 22	0.19 0.50	0.02			1	1 1	-	1	0.0	w 0.7%	0.517 0.04	~	1007 0005	21/6	7 0300	1002	0.024
D6 D025R (rabber find down)	Cast Darlies of Rod Work Plans		6	247		0.6	231716	6 29612	0.005 0.206	0.251 (25. 0	15 0.02	0.20 3	12 9.22	0.00	(4) 0.23	621	0.20 0.29	0.30	0.06	22 02	6 0.005	0.009 0.0	08 424.298	0.157 0.568	0.0	2 925	0.100 0.0	ia.	8.030 0.000	60.0	0.200	0.064	4.26
GRADER (gader)	First Portion of Rol Work Phone	1	6	197	0.42	0.225	1.30687	4.39134	0.005 0.129	0.128 475 6	15 0.67	0.16 1	4.44	0.00 6	012	- 491	0.16 0.07	0.23	0.06	2.2 0.2	6 0.005	0.008 0.0	474.539	0.157 0.095	0.0	61 2.231	0.264 0.08	6	0.008 0.008	451.25	0.155	0.070	0.22
WHEEL LOADER subbertied isaler)	First Parties of Rol Work Plane		<	265	0.56		1.34034	3 9977	0.005 0.1	a.060 #30 #	15 0.60	6.74 1	140 D AR	0.00 0	00 0.02			0.14	8.86	33 63	4 446	0.009 0.0	100 100 001	a.143 mass	0.0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.000 0.00	w.	0.006 0.006	176 16	a 199	4466	
											1	1.34 5.	12.09	0.02 0	62 0.57	1489	0.49 0.22	0.77			1	1			0.2	6,879	0.877 0.65	6	6.025 0.025	J493.044	4 0.479	6215	6.706
LOCOMOTIVE human 1200 1500 MP1	Later Portion of Rail Work Plane		5		0.4	0.60021	1.52	4.9		0.229 671 6		3.97 12			.52 149		0.35 0.16		0.08424		0.0067	0.005 0.01	455 671.450	0.057 0.017	0.5	87 12,109		12	0.099 0.095		0.345	0.157	2.020
TAMPER tasks 100 EP1 to ber construction equipment*	Later Portion of Rail Work Phase	1	4		0.42	0.492	2,20204	4.4558	0.005 0.323	0.298 472 6	15 0.67	0.18 1	17 1.45	0.00 6	011 011	175	0.06 0.03	0.08	0.05	3.7 0.2	6 0.005	0.008 0.0		0.153 0.069	0.0	02 1,320		12	0.009 0.009	174.92		0.036	0.062
ALLIGNER (max 100 HP) (other construction equipment)*	Later Portion of Rail Work Phase	1	4		0.42		2,20304	4.4558	0.005 0.323		.15 0.07	0.28 2	17 1.45	0.00 6	0.12 0.11		0.06 0.03		0.06			0.008 0.0	472.275	0.153 0.069	0.0	22 1.320		12	0.002		4:457		0.063
SWNGER (says 50 HP) (other construction equipment)*	Later Portion of Rol Work Phase	1	5		0.42	1.01	5.30349	4.99276	0.005 0.202	0.151 529 6	.17 0.05	6.22 1	25 1.12	0.00 6	0.09		0.06 0.92		0.12		4 0.005	0.008 0.0	68 527.783	0.171 0.077	0.0	08 0.855	0.634 0.0	96	0.002 0.002		4 0.040	0.018	0.051
WELDERS resident	Later Portion of Rol Work Phase	2	5		0.45	0.929	4.298	4.132	0.007 0.203	0.269 568 6	60 0.65	0.57 3	2.97	0.00 6	014		0.05 0.02		0.12		5 0.007		08 598 299		0.0	62 2.697	1.892 0.00	6	0.005 0.005			0.029	019
35 TON RT CRANE (gane)	Later Portion of Rol Work Phase	1	5	231	0.29	0.929	1.67924	4,10429	0.005 0.167	0.152 472 6	.15 0.67	0.36 1	2.02	0.00 6	012 011		0.11 0.15		0.06	2.2 62	6 0.005	0.008 0.0	472.906	0.153 0.099	0.0	1.625		м	0.006 0.006		0.0112		916
Phote Total												5.39 20	4 25.22	0.05 2	11 2.62		0.65 0.30	2.67							0.2	56 28.132	9.575 0.05	3	4118 0.115	5651.123			2.611
FLAT BED TRACTOR (75% onder25% office of hidrow tack)	Entry Rol Work Phose		4	602	0.27	0.225	1,22281	1.95167	0.005 0.072	0.066 475 6	15 0.60	0.11 0	66 0.96	0.00 6	66 63	293	0.08 0.022	0.11	0.06	3.7 0.2	6 0.005	0.008 0.0	08 474.542	0.153 0.099	0.0	60 1,820	0.128 0.0	12	0.006 0.006	233,412	5 0.075	4.016	9.11
STRUCTURAL WORK PHASE					_										_																		
GENERATOR summer sets	Entire Structural Work Phase	2		54	0.24	0.326	3.361	2.849	0006 0153	0.153 568 6	0.00	0.80 8	29 7.12	0.00 6	28 0.25	1402	0.00 0.00	0.64	0.06		6 0.006		08 568 299	0.029 0.013	0.1	48 9.127		15	0.020 0.020		9.072		0.64
75 TMOREE CRANE/crane)	Entry Structural Work Phase Entry Structural Work Phase	1	5					4.10429	0.005 0.167		15 0.07	0.36 1	24 3.03	0.00	011		0.11 0.15		0.05		6 0.005		08 472.906			1425		24	0.006 0.006				016
CONCRETE PUMP (name)		1	2	34	0.74	0.917	3.412	2323	0.005 0.062	0.142 558 6	0.00	6.33 3	27 2.60	0.00 6	036 036		0.02 0.12	625	0.06	3.7 62	6 0	5 0.00% 0.D	568 200	0331 0314	0.0	58 2599	0.309 0.00	6	0.008 0.008	56.19			0.24
WHEELLOADER subhersted loaders	Entire Structural Work Phase	4		203	0.45		124934	2.9977	0.005 0.1	0.092 470 6	15 0.60	0.30 3	29 7.94	0.00 6	36 024			0.59	0.05	2.2 62	6 0.005	0.00% 0.0	08 698.566	0.152 0.065	0.1	59 5929 65 1.971	0.689 0.0	12	0.021 0.021			9.151	0.5%
WELDERS (welder) Place Total	Entire Structural Work Phase	2	\$	- 45	0.45	0.329	4.728	4144	6307 6.201	6.251 558 6	0.001								0.12	4.1 2.7	5 6.00/	GDDK GD	GK 558.299	0.014 0.0243	0.0			34	4055 0.055				6.120
Phase Total							1					2.41 28.	22.79	0.04 1	0.01	3000	0.65 0.29	1.27						1 - L	0.4	54 22.097	2.027 0.64	¥.(4004 4058	200465	9 0.651	6292	1.726
											L													L									

The train of the stand sequence space and space space

Conversion Factors

Project Farment	Construction Datation (years)	Maximum Daily Emissions (Ib-May)	Daily Emissions (metric tonoiday)	Maximum Annual Emissions (one-jour)	Total Enrictions (metric tota)	Mitigated Maximum Daily Emissions (It-sky)	Daily Emissions (metric torochie) Mitigand Maximum Annual Emissions (mmc/yau)		al Emissions actric tono
	Sile Work Prior to Rail Work Structures Work Plane Plane Rail Work Structures	ROG CO NOX SO2 PM10 PM2.5 CO2 CBI	620 CO24	ROG CO NOX SO2 Figlion Fidure Total Figlion Ethnor	PMD.5 Tanal CO2 CH4 N20 CO26 ROG	CO NOX SO2 PM09 PM25 CO2 CHI N20		M00 PM20 PM25 PM25 PM25 CO2 CHI N20 CC hear Total Feglite/Dat Ethear Total	C02e
LODE STATION	647 100 0.08 0.10	8.03 20.25 90.90 0.30 3.17 3.06 9736 1.40	4 Eac	2 0.536 2.906 5.467 0.006 - 0.231 0.231 - 0.216		44.27 13.05 0.10 0.20 0.19 9736 1.40 0.4	3 4.52 0.090 2.94K 0.497 0.006 -	0.002 0.012 - 0.011 0.041 585 0.138 0.042	\$51
LODI STATION - SOUTH ALTERNATIVE	0.67 1.00 0.08 0.10	8.03 29.25 99.90 0.30 3.17 3.06 9736 1.40	1.63 4.5	2 0.536 2.906 5.467 0.006 - 0.231 0.231 - 0.216	0.216 585 0.138 0.062 551 1.31	44.27 13.05 0.10 0.20 0.19 9736 1.40 0.4	3 4.52 0.090 2.948 0.497 0.006 -	0.012 0.012 - 0.011 0.011 585 0.128 0.062	551
IN IN CROATE OF A TROAT A COTTAGE AS IN TAXABLE AND A DESCRIPTION									422
ELE CROVE STATION ACCESS (Fourth Less (Fridaine Internation)	60 La La La	2.15 16.55 22.00 0.05 1.45 1.41 2651 0.65		a and and and a and a and a and a and	0.000 500 0.005 0.005 0.00	22.22 2.45 0.04 0.05 0.05 2654 0.04 0.4	2 120 0000 2025 0200 0005.	0000 0010 . 0000 000 000 000	422
CITY COLLEGE STATION	0.33 0.38 0.39 0.25	8.03 39.25 99.90 0.30 3.17 3.06 9736 1.40	1.63 E.	2 0.516 2.458 6.205 0.006 - 0.220 0.220 - 0.208	0.208 571 0.115 0.052 534 1.31	44.27 13.05 0.10 0.20 0.19 9736 1.40 0.4	3 4.52 0.076 2.560 0.637 0.006 -	0.01 0.01 - 0.01 0.01 571 0.115 0.052	574
MIDTOWN SACRAMENTO STATION	0.67 0.00 0.00 0.25	8.03 39.25 99.90 0.30 3.17 3.06 9736 1.40		2 0.656 3.180 7.699 0.007 - 0.297 0.297 - 0.270	0.270 700 0.156 0.070 658 1.31	44.27 13.05 0.10 0.20 0.19 9736 1.40 0.4	3 4.52 0.096 3.363 0.730 0.007 -	0.004 0.014 - 0.014 0.014 700 0.156 0.070	658
OF D-NORTH SLOPAMENTO STATION	642 AB AB	ein3 3675 60.60 n.m. 5.17 5.66 6756 i.m.		0 0.727 0.777 6.438 0.008 . 0.230 0.738 . 0.262	a.582 #24 a.122 a.666 223 1.31	AL 27 1246 A 10 A 20 A 10 4736 1.40 A 4	3 A40 A111 1426 A426 A000 -	0.006 0.016 - 0.016 0.016 934 0.177 0.080	771
NATOMAS / SACRAMENTO AIRPORT STATION	6.67 0.87 0.33 0.25	8.03 39.25 99.90 0.30 3.17 3.06 9736 1.40	4.5	2 0.655 3.173 7.690 0.007 - 0.297 0.297 - 0.299	0.269 699 0.156 0.070 657 1.31	44.27 13.05 0.10 0.20 0.19 9736 1.40 0.4	3 4.52 0.094 3.156 0.722 0.007 -	0.004 0.014 - 0.014 0.014 699 0.156 0.070	657
NATOMAS MAINTENANCE & LAVOVER FACILITY	0.50 117 0.67 108	8.03 39.25 99.90 0.30 3.17 3.06 9736 1.40	1.63 E.	2 1.450 8.142 16.144 0.019 - 0.605 0.605 - 0.577	0.577 1823 0.337 0.152 1.702 1.31	44.27 13.05 0.10 0.20 0.19 9736 1.40 0.4	3 4.52 0.238 9.140 1.854 0.029 -	0.033 0.033 - 0.083 0.013 1923 0.337 0.152	1702
TRACK CURVE RECONSTRUCTION EAST MARCH IN TO EAST SWAIN RD	0M 0N 0N 0N	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.90		5 0.054 0.233 0.443 0.000 - 0.023 0.023 - 0.022	0.022 56 0.012 0.005 52 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.008 0.231 0.067 0.004 -	0.001 0.001 - 0.001 0.001 56 0.012 0.005	52
TRACK CURVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD	0.04 0.04 0.04 0.00	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.96		5 0.054 0.233 0.683 0.000 - 0.023 0.023 - 0.022	0.022 56 0.012 0.005 52 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.008 0.231 0.067 0.004 -	0.001 0.001 - 0.001 0.001 56 0.012 0.005	52
TRACK CURVE RECONSTRUCTION SOUTH OF DESMOND RD	014 024 024 025	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.96	1.42 2.1	5 0.056 0.233 0.683 0.000 - 0.023 0.023 - 0.022	0.022 56 0.012 0.005 52 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.008 0.231 0.067 0.004 -	0.001 0.001 - 0.001 55 0.012 0.005	52
TRACK CURVE RECONSTRUCTION NORTH OF ELK GROVE STATION	0M 0N 0N 0N	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.90		5 0.054 0.233 0.443 0.000 - 0.023 0.023 - 0.022	0.022 56 0.012 0.005 52 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.008 0.231 0.067 0.004 -	0.001 0.001 - 0.001 0.001 56 0.012 0.005	52
BAMBLED FANE GENERGTEN DADE	639 AM AM AM	6.66 01.61 70.11 n.n6 0.16 0.n6 6936 n.66		5 0.100 0.466 1.366 0.000 - 0.007 0.047 - 0.044	AAAA 117 AA23 AAA1 105 A45	- 22.22 IONO ANG ALA ALA ALA ALA ALA ALA	. 1000 2110 DAG 2000 271 0	AAR AAR . AAR AAR AAR AAR AAR AAR AAR AA	and a
THORNTON SEDENG UPGRADE & EXTENSION	0.17 0.17 0.17 0.00	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.96		5 0.228 0.933 2.732 0.002 - 0.093 0.093 - 0.098	0.088 224 0.047 0.021 210 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.030 0.923 0.269 0.002 -	0.05 0.05 0.005 0.005 224 0.047 0.021	210
PHILLIPS SIDING UPGRADE & EXTENSION	0.00 0.00 0.00	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.90		5 0.109 0.466 1.366 0.001 - 0.047 0.047 - 0.044	0.064 112 0.023 0.011 105 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.005 0.461 0.135 0.004 -	0.002 0.002 - 0.002 0.002 112 0.023 0.011	205
POLLOCK SIDING UPGRADE	038 038 038 038	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.90		5 0.109 0.466 1.366 0.001 - 0.047 0.047 - 0.044	0.044 112 0.023 0.011 105 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.005 0.461 0.125 0.001 -	0.002 0.002 - 0.002 0.002 112 0.023 0.011	205
SOUTH SACRAMENTO SIDING UPGRADE	0.08 0.08 0.08	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.96		5 0.257 1.042 3.356 0.003 - 0.107 0.107 - 0.101	0.101 271 0.050 0.022 253 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.036 1.096 0.361 0.009 -	0.05 0.05 0.005 0.005 271 0.050 0.022	253
DEL PASO SEDING UPGRADE & EXTENSION	0.50 0.00 0.00 0.00	8.03 39.25 99.90 0.30 3.17 3.06 9736 1.40		2 0.814 3.983 9.678 0.009 - 0.346 0.346 - 0.328	0.328 918 0.183 0.082 859 1.31	44.27 13.05 0.10 0.20 0.19 9736 1.40 0.4	3 4.52 0.121 4.198 1.004 0.009 -	0.017 0.017 0.017 0.017 918 0.183 0.082	\$59
LODI SIDING	0.13 0.39 0.39 0.00	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.90	1.42 2.1	5 0.435 1.845 5.464 0.005 - 0.197 0.197 - 0.176	0.176 447 0.094 0.042 419 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.061 1.845 0.538 0.005 -	0.009 0.009 - 0.009 0.009 447 0.094 0.042	419
THE COME CODES									
NEW CROSSOURD	ALGO 0.08 0.08 0.00	5.56 21.51 77.11 0.06 2.16 2.08 5936 0.90		5 0.109 0.466 1.366 0.001 - 0.047 0.047 - 0.044	0.044 112 0.023 0.011 105 0.85	22.27 10.02 0.06 0.14 0.13 5936 0.94 0.4	2 2.75 0.015 0.461 0.125 0.001 -	0.002 0.002 - 0.002 0.002 112 0.023 0.011	

5.5 Sets 2151 77.11 0.66 2.16 2.286 9956 0.62 2.251 0.100 0.466 1.566 0.000 - "Non that consists on air label phases, so formula extramontally mixing index of start up to air label endowed in the start of the

Onsite On-Raod ConstructionVehicle Emissions (Exhaust)

							Emi	ission Facto	rs (g/mile) ³												Duit	Emissions	(Dyday)						Emissions fr tonether)					Mitig	ated Emiss	ion Factors	ghalle) ³									м	isigated Daily	Emissions	(lh/day)					Daily Emi	Jedone .
Vobilicie Type	# Vehicles On- Site Miles / Da	BOG_RU	NEX CI	D_ N NEX RI	INX_R	O2_ PMI UNE Fugitive X 4	Dust RU	410_ P2 NEX To	file Fagitive	Dust R	M2.5_ P ENEX 1	M2.5 CO keal RC?	a_ arx	CB4_ RUNEX	N2O RUNE X	ROG	c00	NOX	802	PM10 Fagitive Dast	PM10 Exhaust	PM10 Total	PM2.5 Fagitive Dot	PM2.5 Exhaust	P912 Teta	.5 4 CO2	CB4 N2		C02#	ROG	co	NOX SOI	PMI Fagitive	0 P Dast' Ex	M10 I	M10 Fu	12.5 P jiliso E	M2.5 datest	PM2.5 Total	со2 си	N20	ROG	00	NOX	802	PM10 Fegitive Dust	PM10 Exhaust	PM10 Total	PM2.5 Fugifive Dust	PM2.5 Exhaust	PM2.5 Total	со2 си	314 N20		
SITE WORK PHASE																																														(_	-	
Water Track (100% op-site)	1 3	1.57	2	20 1	0.29	b02 57.1	16 0	124 5	40 5.5	7	0.23	5.60 24	17	0.07	0.28	0.01	0.02	0.07	0.00	0.28	0.00	0.38	0.04	0.	00 0	.04 16	0.00 0	10	0.01	1.57	2.30	10.79 0.02	2 24.5	a .	124	\$7.49	.40	0.23	5.80	2417 0.0	0.28	0.01	0.1	0.07	7 0.00	0.16	0.00	0.16	0.02	0.00	0.02	16 0.	0.00 0.7	10	0.00
RENTAL DUMP TRUCKS (50% oncin/50% offsite)	4 5	1.57	2	26 1	0.39	6402 57.1	(6 (124 5	40 55	7	0.23	5.60 24	17	0.07	0.26	0.03	665	0.15	0.00	1.01	0.0	1.91	0.10	0.	00	10 45	0.00 0	10	0.03	1.57	2.20	10.79 0.03	24.5	a i	62N :	57.40	.40	0.23	530	2417 0.6	0.28	0.05	0.0	05 0.15	0.00	0.42	0.00	0.66	0.01	0.00	0.05	43 0	0.00 0.0	4	0.02
Phase Tetal																0.04	0.07	0.25	0.00	1.39	9.01	1.89	0.14	<i>ā</i> 1	91 0.	14 59	0.00 -04	N	0.03													0.04	0.0	0.25	0.00	0.60	0.01	0.60	0.06	0.01	0.05	59 0.1	3.00 -0.0	4	0.03
RAIL WORK PHASE																																															· · · · ·	1					_	_	
Water Track (100% on-site)	2 6	1.57	2.	70 1	0.79	0.02 57.1	16 0	1.24 57	40 5.5	7	0.23	5.80 24	17	0.07	0.78	0.02	0.04	0.14	0.00	0.76	0.00	0.76	0.03	0.	00 0	.08 22	0.00 0	00	0.01	1.57	2.70	10.79 0.03	2 24.5	8	0.24 :	57.40	.40	0.23	5.80	2417 0.0	0.78	0.02	0.1	0.14	0.00	0.33	0.00	0.33	0.03	0.00	0.03	32 O	2.0 0.0	4	0.00
FLATBED TRUCK (75% onsite/25% offsite)	1 2	1.70	3.	72 1	5.65	0.03 57.1	16 0	3.21 57	37 55	7	0.20	5.78 36	32	0.05	0.57	0.00	0.02	0.07	0.00	0.25	0.00	0.25	0.00	0.	00 0	.03 16	0.00	00	0.01	1.70	3.72	15.65 0.03	1 24.5	3	0.21 :	\$7.37	.40	0.20	5.78	3632 0.0	0.57	0.01	0.1	0.07	0.00	0.11	0.00	0.11	0.00	0.00	10.01	16 0	0.00 0.0	0	0.00
PERUPS (50% onsite 50% offsite)	3 9	0.13	21	00 0	0.19	0.01 57.1	16 0	1.01 51	17 5.5	7	0.01	5.58 8	80	0.03	0.02	0.00	0.04	0.00	0.00	1.13	0.00	1.13	0.11	0.	00 0	11 17	0.00	00	0.01	0.13	2.06	0.19 0.01	1 24.5		: 20.0	\$7.17	.40	0.01	5.58	\$40 0.0	0.02	0.00	0.1	0.00	/ 0.00	0.49	0.00	0.49	0.05	0.00	0.05	17 0.	0.00 0.0	0	0.00
SUV (100% onsite)	2 6	0.13	21	00 0	0.19	0.01 57.1	16 0	1.01 51	17 5.5	7	0.01	5.58 8	80	0.03	0.02	0.00	0.03	0.00	0.00	0.76	0.00	0.76	0.05	0.	00 0	.07 11	0.00	00	0.01	0.13	2.06	0.19 0.01	1 24.5	3	: 20.0	\$7.17	.40	0.01	5.58	\$40 0.0	0.02	0.00	0.1	00.0	/ 0.00	0.33	0.00	0.33	0.03	0.00	0.03	11 0	0.00 0.0	0	0.00
FLATBED TRUCK (75% onsite/25% offsite)	1 2	1.70	3.	72 1	5.65	0.03 57.1	16 0	3.21 57	37 55	7	0.20	5.78 36	32	0.05	0.57	0.00	0.02	0.07	0.00	0.25	0.00	0.25	0.00	0.	00 0	.03 16	0.00	00	0.01	1.70	3.72	15.65 0.03	1 24.5	3	0.21 :	\$7.37	.40	0.20	5.78	3632 0.0	0.57	0.01	0.1	0.07	0.00	0.11	0.00	0.11	0.00	0.00	10.01	16 0	0.00 0.0	0	0.00
Phase Total																0.04	011	0.28	0.00	115	0.01	3.16	611	đu	97 Ø.	31 92	0.00 0.1	21	0.04													6.64	0.1	0.28	0.00	1.35	10.0	1.36	11.0	0.07	0.14	92 0.1	3.00 0.0	1	0.04
STRUCTURAL WORK PHASE																																														-								1	
Water Track (100% on-site)	1 3	157	2.	20 1	10.39	0.02 57.1	16 0	124 5	40 5.5	7	0.23	5.80 24	17	0.07	0.28	0.00	0.02	0.07	0.00	0.28	0.00	0.58	0.04	0.	00 0	.04 16	0.00	00	0.01	1.57	2.70	10.79 0.03	2 24.5	3	0.24 ::	57.00	.40	0.23	5.80	2417 0.0	0.28	0.01	0.1	0.07	0.00	0.16	0.00	0.16	0.02	0.00	0.02	16 0.	0.00 0.0	0	0.00
FLAT RED TRUCK (75% optim/25% offsite)	1 2	1.70	3	72 1	5.65	57.1	16 (21 5	37 5.5	7	0.20	5.78 36	32	0.05	0.57	0.01	6.02	0.07	0.00	0.25	0.00	0.25	0.05	0	00 0	03 16	0.00 0	00	0.01	1.79	3.72	15.65 0.03	24.5	a .	0.21	\$7.37	.40	0.20	5.78	1632 0.0	0.57	0.01	0.0	0.07	0.00	9.17	0.00	0.11	0.00	0.00	0.01	16 0	4.00 0.0	4	0.00
PEXUPS (50% onsite 50% offsite)	3 9	0.12	21	61 6	0.19	57.1		201 5	17 55	7	0.01	5.55 16	80	0.03	0.02	0.00	0.04	0.00	0.00	1.0	0.00	1.12	0.11	0	00 0	11 17	0.00 0	00	0.01	0.17	2.66	0.19 0.01	24.5	a .	0.00	57.17	.40	0.01	5.58	540 0.0	0.02	0.00	0.0	0.00	/ 0.00	9.47	0.00	0.49	0.05	0.00	0.05	17 4.	4.00 0.0	4	0.00
Concrete Miner Delivery (100% onsite)	5 5	1.57	2	20 1	0.39	6402 57.1	16 (24 5	40 55	7	0.23	5.60 24		0.07	0.28	0.02	0.03	9.11	0.00	0.65	0.00	0.65	0.06	0	00 0	06 27	0.00 0	00	0.01	1.57	2.30	10.79 0.03	24.5	a .	0.24	57.40	.40	0.23	530	2417 0.0	0.28	0.02	0.0	03 0.11	0.00	9.27	0.00	0.27	0.05	0.00	0.03	27 0.	0.00 0.00	00	0.00
Phase Tetal				_	_		_	_		_	_		_	_	_	0.04	010	0.26	0.00	2.39	0.01	2.40	823	đu	97 â.	N 75	0.00 03	20	0.07		_	_	_	_	_	_	_	_		_	_	0.04	0.1	10 0.26	s 0.00	1.03	10.0	1.03	01.0	0.07	0.11	75 BJ	200 0.0	1	0.03
															Total	0.12	6.30	9.79	0.00	6.93	9.02	6.95	0.67		92 0	69 226	0.01 0	13	9.15												Total	0.12	0.	30 0.75	9 0.00	2.95	0.02	3.09	9.29	0.02	0.31	226 0.	4.01 9.7	0	9,10

 Miles per day for on-enal construction equipment is based actors read-on-site activity evoluture in Data Tab (off-rise activity services) extended as Linear OOP Size LDFF-CO-Read HTx sub;
 Linearion Encourse for the service of the service activity and activity of the service of the service of the service activity of the service of the serv

Antendings			
Worker Trip length	16.8	Average Markdays/yr	
		Months/Year	
		Fegitive Dest	
Conversion Factors		Control Efficiency	57
pans per poand	453.59237		
xunde per ton	2000		
counds per metric ton	2264.62262		
Slobal Warming Petential			
202			
	25		
24	298		

Project Element		Construction	Daration (years)		Maximum Dal	ly Emissions (P	hiday)						Duily Emissio (metric tons/d	is y) Masimu	n Annual Essi	esiote (tote	(var)								Total Emiori ons (metric tons)			Miriganed M	osimum Daily	liniosions (Brida	0			Daily Emissions (metric tonoiday)	iriganed Max	mann Annaal	Emissions ((lone'year)								Total Emission 4 (metric 2008)
	Total	Star Work	Rail Work	Structures	ROG	CO N	iox :	SO2 P9	EDO 254	12.5 C	02 CH4	N20	0024	ROG	c0 1	NOX SI	PMI0 Fagitive Dast	PM10 Ethast	PM10 Total	PM2.5 Fagitiva Daz	PM2.5 Exhaust	PM2.5 Total	C102	сни м	20 CO2e	ROG	co	NOX 9	2 PM10	PM2.5	002	СН	N20	CID2e	ROG	10 NO3	x 502	PM10 Fagitina Dast	PM10 Exhaust	PM10 Total Fag D	E.5 Rive Exhan	-5 PM2 at Tot		C114	N20	CODe
LODI STATION	1.2	1.00	6.08	0.10	0.12	0.30	0.79	0.00	195	0.69	25.68 0.0	1 0.03	0.	10.0	0.02	0.05 0	.00 0.37	0.000	2 0.3	7 0.04	0.0011	0.04		0.00 0				0.79 0.0		0.31	225.68	0.01	0.03	0.10	0.005 0	007 0.02	52 0.000	0.159	0.0012	0.160 0.	016 0.0	0001 0	1017 13.508	0.0004	0.002	12.25
LODI STATION - SOUTH ALTERNATIVE	1.2	1.00	6.08	0.10	0.12	0.70	0.79	0.00	195	0.69	25.68 0.0	4 0.03	0.	10.0	0.02	0.05 0	.00 0.37	0.000	2 0.3	7 0.04	0.0011	0.04		0.00 0			12 0.30			0.31	225.68	0.01	0.03		0.005 0		52 0.000	0.159	0.0012	0.160 0.	016 0.0	0001 0	1017 13.508	0.0004	0.002	12.25
CITY COLLEGE STATION	0.7	6.33	6.33	0.31	0.12	0.70	0.79	0.00	1.29	0.00	25.68 0.0	4 0.03	0.	00.0	0.01	0.03 0	.00 0.27	0.000	0.2	\$ 0.03	0.0006	0.03		0.00 0	.00 \$.13			0.79 0.0		0.31	225.68	0.01	0.03	0.10	0.005 0	002 0.00	1 0.000	0.118	0.0007	0.119 0.	012 0.0	0006 0	1012 8.964	0.0003	0.001	8.13
MIDTOWN SACRAMENTO STATION	1.0	0.81	6.33	0.31		0.70	0.79	0.00	195	0.69	25.68 0.0	4 0.03	0.	10.0	0.02	0.05 0	.00 0.36	0.000	0.0	7 0.04	0.0000	0.04			00 11.59		12 0.30			0.31	225.68	0.01	0.03	0.10	0.007 0	006 0.04	ES 0.000	0.157	0.0010	0.158 0.	015 0.0	0000 0	1016 12.773	0.0004	0.002	11.59
OLD NORTH SACRAMENTO STATION	1.2	0.81	6.33	0.10		0.70	0.79	0.00	195	0.69	25.68 0.0	4 0.03	0.	10.0	0.02	0.06 0	.00 0.44	0.000	2 0.4	4 0.04	0.0012	0.04	15.22	0.00 0	00 13.81			0.79 0.0		0.31	225.68	0.01	0.03	0.10	0.005 0	020 0.05	56 0.000	0.190	0.0012	0.191 0.	0.0 0.0	0002 0	1020 15.221	0.0005	0.002	13.81
NATOMAS / SACRAMENTD AIRPORT STATION	1.0	647	6.33	0.31		0.70	0.79	0.00	195	0.69	25.68 0.0	4 0.03	0.	10.0	0.01	0.04 0	.00 0.13	0.000	9 0.3	4 0.03	0.0009	0.03	11.50	0.00 0	00 10.44		12 0.30			0.31	225.68	0.01	0.03	0.10	0.006 0	0.05 0.04	12 0.000	0.144	0.0009	0.145 0.	014 0.0	0009 0	1015 11.503	0.0003	0.002	10.44
NATOMAS MAINTENANCE & LAYOVER FACILITY	25	1.17	647	2.00	0.12	0.70	0.79	0.00	195	0.69	25.68 0.0	4 0.03	0.	20.0	0.05	0.13 0	.00 1.11	0.002	2 1.1	1 0.11	0.0026	0.11	36.42	0.00 0	00 31.04	0.1	12 0.30	0.79 0.0	12 3.00	0.31	225.68	0.01	0.03	0.10	0.027 0	019 0.12	29 0.000	0.475	0.0027	0.478 0.	046 0.0	0026 0	1049 36.421	0.0011	0.005	22.04
TRACK CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN RD	0.1	0.04	5.05	0.00	0.05	0.20	0.53	0.00	55	0.45	50.28 0.0	0 0.02	0.	0.00	0.00	0.00 0	20.0 002	0.000	N 0.0	0.00	0.0001	0.00	0.81	0.00 0	00 0.74	0.0	05 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.000 0	0.00	13 0.000	0.011	0.0001	0.011 0.	0.0 100	0001 0	0.001 0.815	0.0000	0.000	0.74
TRACK CURVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD	0.1	0.04	5.05	0.00	0.05	0.20	0.53	0.00	55	0.45	50.28 0.0	0 0.02	0.	0.00	0.00	0.00 0	20.0 002	0.000	N 0.0	0.00	0.0001	0.00	0.81	0.00 0	00 0.74	0.0	05 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.000 0	0.00	13 0.000	0.011	0.0001	0.011 0.	0.0 100	0001 0	0.001 0.815	0.0000	0.000	0.74
TRACK CURVE RECONSTRUCTION SOUTH OF DESMOND RD	0.1	034	5.05	0.00	0.05	0.20	0.53	0.00	55	0.45	50.28 0.0	0 0.02	0.	0.00	0.00	0.00 0	20.0 002	0.000	N 0.0	0.00	0.0001	0.00	0.81	0.00 0	00 0.74	0.0	05 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.000 0	0.00	13 0.000	0.011	0.0001	0.011 0.	0.0 100	0001 0	0.001 0.815	0.0000	0.000	0.74
TRACK CURVE RECONSTRUCTION NORTH OF ELK GROVE STATION	0.1	034	5.05	0.00	0.05	0.20	0.53	0.00	55	0.45	50.28 0.0	0 0.02	0.	0.00	0.00	0.00 0	20.0 002	0.000	N 0.0	0.00	0.0001	0.00	0.81	0.00 0	00 0.74	0.0	05 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.000 0	0.00	13 0.000	0.011	0.0001	0.011 0.	0.0 100	0001 0	0.001 0.815	0.0000	0.000	0.74
HAMMER LANE SEDING UPGRADE	0.2	0.38	608	0.00	0.05	0.20	0.53	0.00	55	0.45	50.28 0.0	0 0.02	0.	0.00	0.00	0.01 0	0.05	0.000	N 0.0	5 0.00	0.0001	0.00	1.63	0.00 0	00 1.48	0.0	05 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.001 0	002 0.00	35 0.000	0.021	0.0001	0.021 0.	002 0.0	0001 0	1.629	0.0000	0.000	1.48
THORNTON SEEING UPGRADE & EXTENSION	0.3	0.17	6.17	0.00	0.05	0.20	0.53	0.00	55	0.45	50.28 0.0	0 0.02	0.	0.00	0.00	0.01 0	00 0.10	0.000	2 0.3	0 0.01	0.0002	0.01	3.26	0.00 0	00 2.96	0.0	05 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.002 0	004 0.04	12 0.000	0.042	0.0002	0.043 0.	0.0 100	0002 0	1004 3.258	0.0000	0.000	2.96
PSELLIPS SEXING UPGRADE & EXTENSION	0.2	0.38	608	0.00	0.05	0.20	0.53	0.00	55	0.45	50.28 0.0	0 0.02	0.	0.00	0.00	0.01 0	0.05	0.000	N 0.0	5 0.00	0.0001	0.00	1.63	0.00 0	00 1.48	0.0	05 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.001 0	002 0.00	35 0.000	0.021	0.0001	0.021 0.	002 0.0	0001 0	1.629	0.0000	0.000	1.48
DOLLOCK SERVICE HIGH ADD	0.2	0.08	1.04	0.00	0.05	0.70	0.53	0.00		0.45	50.24 0.0	0 0.02	0	17 0.00	0.00	A44 A	00 0.05	0.000		5 0.00	0.0004	0.00	1.63	0.00	00 1.44		05 0.20	0.53 0.0	1 1 96	0.20	150.26	0.00	0.02	0.07	A101	002 0.00	16 0.000	0.021	0.0001	0.021 0	002 0.0	0001 0	1.629	0.0000	0.000	1.44
SOUTH SACRAMENTO SIDING LINCE ADD	0.3	0.08	0.13	0.00	0.05	0.70	0.53	0.00		0.45	50.24 0.0	0 0.02	0	17 0.00	0.01	A44 A	00 0.12	0.000	0 01	2 0.01	0.0002	0.01	1.62	0.00	00 176		05 0.20	0.53 0.0	1 1 96	0.20	150.26	0.00	0.02	0.07	0.007 0	005 0.00	12 0.000	0.050	0.0002	0.051 0	005 0.0	0002 0	005 1617	0.0001	0.000	1.24
DEL PASO SEDING UN PADE & EVENSION	1.0	010	6.93	410	0.12	0.10	0.79	0.00	205	0.69	25.68 0.0	0.03	0	0.04	0.02	0.05	00 0.45	0.000		5 0.04	0.0000	0.04	14.67	0.00	00 1111		12 0.30	0.79 0.0	12 100	0.31	225.68		0.03	0.10	0.005	020 0.05	51 0.000	0.194	0.0011	0.195 0	019 01	0000 0	1020 14.669	0.0004	0.002	13.31
LODE STREET	0.7	0.11	6.11	0.00	0.05	0.70	0.53	0.00		0.45	50.24 0.0	0 0.02	0	17 0.00	0.01	0.02	00 0.20	0.000	6 63	0.002	0.0005	0.02	6.52	0.00	00 591		05 0.20	0.53 0.0	1 1 96	0.20	150.26	0.00	0.02	0.07	0.003	009 0.02	23 0.000	0.085	0.0005	0.085 0	005 0.0	0005 0	000 6516	0.0002	0.001	5.91
NEW CROSSOVER	0.2	0.38	6.06	0.00	0.05	0.20	0.53	0.00	155	0.45	50.38 0.0	0 0.02	0.	0.00	0.00	0.02 0	0.05	0.000	0.0	5 0.00	0.0001	0.00	1.63	0.00 0	00 1.48	0.0	08 0.20	0.53 0.0	1 1.96	0.20	150.38	0.00	0.02	0.07	0.001 0	002 0.00	35 0.000	0.021	0.0001	0.021 0.	002 0.0	0001 0	1.629	0.0000	0.000	1.48
					Note that som	ne locations do maximum daily	not include all emissions, it is	phases, so for assumed the	undas for mar all constructi	rilean daily on ion phases coal	iocione in above d'overlap at son	chart sary to ac e point within t	t include emissis te overal constru	as for phases ition duration	with no activ for each loc	ity at a speci ation.	ie location.																													

	DemoRion Emissions	

Entition Factors **** Earth Moving Grading Cat & Fill Demolition PMI0 PM2.5 PM10 PM2.5 PM10 PM2.5 (BMr) (bhare) (bhare) (bhare) (bhare) (bhare) (bhare) (C372) (C442) (C374) (C407) (C000) (C000) (C000) ee "Fugitive Dust Emission Factors" Worksheet for emission factor details.

														Emis	sion (total)	ons)				1				Emission (Ibs	s/day)				1			Mitigated I	Emission (to	otal tons)			1			Mitiga	ted Emission	(Ibs/day)		
											Earth M	doving	Grading		Cut & Fill	E	emolition		Total	Earth	Aoving	Grau	ling	Cut &	Fill	Demol	lition	Total	Eart	h Moving	Grading	C	ut & Fill	Demoli	tion	Total		Earth Mov	ring	Grading	Cut & Fill	Demol	dition	Total
Desition Phonese	Maximum Phase Duration (Months)	% Time for Earthwork	Earthwork Days of Activity	% Time for Demolition	Demolition Days of Activity	# of Balldozers	Use per Day (hrs)	Graded Are (acres)	a CutFill (cy)	Demolition (sf)	PM10	PM2.5	MIO P	M2.5 PN	II0 PM	.5 PMI	0 PM2	5 PM16	PM2.5	PM10	PM2.5	PM10	PM2.5	PM10	PM2.5	PM10	PM2.5	PMIO PM	2.5 PMI	0 PM2.5	PMI0 P	12.5 PMI	0 PM2.5	PM10 1	PM2.5 F	PMI0 I	PM2.5	PM10 P	'M2.5 PM	110 PM2.5	PM10 PM2	LS PMI0	PM2.5 PM	10 PM2.5
LODI STATION	12	15%	38.7	5%	12.9	4	6.5	5 9	16310	0	0.3787	0.2087	0.0024	0.0002 0.	0006 0.	0.0	000 0.0	000 0.38	0.209	0 19.57	10.79	0.12	0.01	0.03	0.00	0.00	0.00	19.72 10	.80 0.14	77 0.081	4 0.0024 0	0002 0.00	0.0001	0.0000	0.0000	0.1507	0.0817	7.6330	4.2062 0.	0.01	0.03 0	.00 0.00	0.00 7	.79 4.22
LODI STATION - SOUTH ALTERNATIVE	12	15%	38.7	5%	12.9	4	6.5	5 13	35990	0	0.3787	0.2087	0.0034	0.0003 0.	0013 0.0	002 0.0	000 0.0	000 0.385	0.209	2 19.57	10.79	0.18	0.02	0.07	0.01	0.00	0.00	19.82 10	0.14	77 0.081	4 0.0034 0	0003 0.00	0.0002	0.0000	0.0000	0.1524	0.0819	7.6330 4	4.2062 0	18 0.02	0.07 0	0.00	0.00 7	.88 4.23
CITY COLLEGE STATION	4	15%	12.9	5%	4.3	4	6.5	5 1	2200	0	0.1262	0.0696	0.0003	0.0000 0.	0001 0.	000 0.0	000 0.0	000 0.120	6 0.069	6 19.57	10.79	0.04	0.00	0.01	0.00	0.00	0.00	19.62 10	0.04	92 0.027	1 0.0003 0	0000 0.00	0.0000	0.0000	0.0000	0.0496	0.0272	7.6330	4.2062 0.	0.00	0.01 0	0.00	0.00 7	.69 4.21
MIDTOWN SACRAMENTO STATION	10	15%	32.25	5%	10.75	4	6.5	5 2	3890	85000	0.3156	0.1739	0.0005	0.0000 0.	0001 0.	000 0.0	015 0.0	002 0.312	78 0.174	2 19.57	10.79	0.03	0.00	0.01	0.00	0.09	0.01	19.71 10	6.80 0.12	31 0.067	8 0.0005 0	0000 0.00	0.0000	0.0015	0.0002	0.1252	0.0681	7.6330	4.2062 0	L03 0.00	0.01 0.	.00 0.09	0.01 7	.77 4.22
OLD NORTH SACRAMENTO STATION	10	15%	32.25	5%	10.75	4	6.5	5 1	7850	155000	0.3156	0.1739	0.0003	0.0000 0.	0003 0.	000 0.0	027 0.0	0.318	0.174	4 19.57	10.79	0.02	0.00	0.02	0.00	0.17	0.03	19.77 10	0.12	31 0.067	8 0.0003 0	0.00 0.00	0.0000	0.0027	0.0004	0.1263	0.0683	7.6330 4	4.2062 0	0.00	0.02 0	0.17	0.03 7	.84 4.24
NATOMAS / SACRAMENTO AIRPORT STATION		15%	25.8	535	8.6	4	6.5	5 4	18500	180000	0.2525	0.1391	0.0011	0.0001 0.	0007 0.	001 0.0	032 0.0	005 0.25	3 0.139	8 19.57	10.79	0.08	0.01	0.05	0.01	0.24	0.04	19.95 10	1.84 0.09	85 0.054	3 0.0011 0	0001 0.00	07 0.0001	0.0032	0.0005	0.1033	0.0549	7.6330	4.2062 0.	0.01	0.05 0	0.24	0.04 2	.01 4.26
NATOMAS MAINTENANCE & LAYOVER FACILITY	14	15%	45.15	5%	15.05	4	6.5	5	135190	155000	0.4418	0.2435	0.0013	0.0001 0.	0049 0.	007 0.0	027 0.0	004 0.450	0.244	7 19.57	10.79	0.06	0.01	0.22	0.03	0.12	0.02	19.97 10	.84 0.17	23 0.095	0 0.0013 0	0001 0.00	49 0.0007	0.0027	0.0004	0.1812	0.0962	7.6330	4.2062 0.	0.01	0.22 0	0.12	0.02 8	.03 4.26
TRACK CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN RD	0.5	15%	1.6125	5%	0.5375	4	6.5	5 O	200	0	0.0158	0.0087	0.0000	0.0000 0.	0000 0.	000 0.0	000 0.0	000 0.01:	58 0.005	7 19.57	10.79	0.00	0.00	0.01	0.00	0.00	0.00	19.58 10	.79 0.00	62 0.003	4 0.0000 0	0000 0.00	00 0.0000	0.0000	0.0000	0.0062	0.0034	7.6330 4	4.2062 0.	0.00	0.01 0	0.00	0.00 2	.64 4.21
TRACK CURVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD	0.5	15%	1.6125	5%	0.5375	4	6.5	5 0	150	0	0.0158	0.0087	0.0000	0.0000 0.	0000 0.	000 0.0	0.0	000 0.01:	5 0.005	7 19.57	10.79	0.00	0.00	0.01	0.00	0.00	0.00	19.58 10	.79 0.00	62 0.003	4 0.0000 0	0.00	0.0000	0.0000	0.0000	0.0062	0.0034	7.6330	4.2062 0.	0.00	0.01 0	0.00	0.00 2	.64 4.21
TRACK CURVE RECONSTRUCTION SOUTH OF DESMOND RD	0.5	15%	1.6125	5%	0.5375	4	6.5	5 0	250		0.0158	0.0087	0.0000	0.0000 0.	0000 0.	000 0.0	000 0.0	000 0.01	58 0.008	7 19.57	10.79	0.00	0.00	0.01	0.00	0.00	0.00	19.58 10	.79 0.00	62 0.003	4 0.0000 0	0.00	00 0.0000	0.0000	0.0000	0.0062	0.0034	7.6330	4.2062 0.	0.00	0.01 0	.00 0.00	0.00 7.	.64 4.21
TRACK CURVE RECONSTRUCTION																																												
NORTH OF ELK GROVE STATION	0.5	15%	1.6125	5%	0.5375	4	6.5	5 0	200	0	0.0158					0.0				7 19.57	10.79	0.00	0.00	0.01	0.00	0.00			0.00			0000 0.00								0.00		0.00		
HAMMER LANE SIDING UPGRADE	1	15%	1.225	5%	1.075	4	6.5	5 0	0	1000	0.0316	0.0174	0.0000	0.0000 0.	0000 0.	000 0.0	000 0.0	000 0.03	0.017	4 19.57	10.79	0.00	0.00	0.00	0.00	0.01	0.00	19.58 10	0.01	23 0.006	8 0.0000 0	0000 0.00	0.0000	0.0000	0.0000	0.0123	0.0068	7.6330	4.2062 0.	0.00	0.00 0	0.01	0.00 7	64 4.21
THORNTON SIDING UPGRADE & EXTENSION	2	15%	6.45	5%	2.15	4	6.5	5 5	38800	1400	0.0631	0.0348	0.0013	0.0001 0.	0014 0.	002 0.0	0.0	000 0.063	0.035	1 19.57	10.79	0.41	0.04	0.43	0.07	0.01	0.00	20.42 10	.89 0.02	46 0.013	6 0.0013 0	0.00	0.0002	0.0000	0.0000	0.0274	0.0139	7.6330 4	4.2062 0.	.41 0.04	0.43 0.	0.01	0.00 8	48 4.31
PHILLIPS SIDING UPGRADE & EXTENSION	1	15%	1.225	5%	1.075	4	6.5	5 3	27900	1400	0.0316		0.0008			002 0.0					10.79	0.49	0.04	0.62	0.09	0.02	0.00		.93 0.01			0001 0.00								.49 0.04		0.02		
POLLOCK SIDING UPGRADE	1	15%	3.225	5%	1.075	4	6.5	5 0	0	1000	0.0316	0.0174	0.0000			000 0.0		000 0.03	0.017	4 19.57	10.79	0.00	0.00	0.00	0.00	0.01	0.00	19.58 10	0.01	23 0.006	8 0.0000 0 8 0.0000 0	0000 0.00	0.0000	0.0000	0.0000	0.0123	0.0068	7.6330	4.2062 0	0.00	0.00 0	.00 0.01	0.00 7	.64 4.21
SOUTH SACRAMENTO SIDING UPGRADE	1	15%	1225	5%	1.075	4	6.5	5 0	0	0	0.0316	0.0174	0.0000	0.0000 0.	0000 0.	000 0.0	000 0.0	000 0.03	0.017	4 19.57	10.79	0.00	0.00	0.00	0.00	0.00	0.00	19.57 10	0.01	23 0.006	8 0.0000 0	0.00	0.0000	0.0000	0.0000	0.0123	0.0068	7.6330	4.2062 0	0.00	0.00 0	.00 0.00	0.00 7	.63 4.21
DEL PASO SIDING UPGRADE & EXTENSION		15%	19.35		6.45		61		149200	9200	0 1894	0.1043	0.0024	0.0002 0	0054 0	008 0.0	002 0.0	0.19	0.105	10.57	10.79	0.21	0.02	0.56	0.08	0.02	0.00	20 39 10	89 0.07	38 0.040	7 0.0024 0	0002 0.00	si 0.000	0.0002	0.0000	0.0818	0.0418	7.6330 4	4 2062 0	24 0.02	0.56 0	0.02	0.00 7	45 4.32
LODI SIDING	4	15%	19.35	5%	4.1	1	6.1	5 12	149200	10070	0.1262					005 0.0				4 19.57	10.79	0.24	0.02	0.56	0.08	0.02	0.00					0002 0.00									0.56 0.			
NEW CROSSOVER	1	15%	12.9	5%	1.075	4	6.	\$ 0	0	1000	0.0316					000 0.0				4 19.57	10.79		0.00	0.36	0.00	0.03	0.00	19.58 H	79 0.01	23 0.005		0003 0.00								100 0.00		00 0.01		64 4.24
NEW CRUSSOVER		1376		30	1.073		Q.,				0.0010	0.0174	0.0000	0.0000 0.	0000 0.	0.0	000 000	0.001	0 0.017	10.07	10.77	0.00	0.00	0.00	0.00	0.01	0.00	12.20	0.01	0.000	0 0.0000 0	0000 0000	0.000	0.0000	0.0000	0.0125	0.0000	1.000	7.4004 0	00 000	0.00 0.	201 0.01	0.00 7.	34 4.41

Days of work per week:	5
Average Workdays per Month:	21.5
Control Efficiency of Watering every 3 hours during Earth Moving activities* *Per SCAQMD Table X1-A	61%
Conversion Factors	
pounds per ton	2000

Paving and Architectural Coating Emissions

				Arch Coati	ng Emission	Pavin	g Emissions	Total E	missions
Project Element	Maximum Phase Duration (Months)	% Time for work	Area (ft ²)	Total (tons)	Daily (lb/day)	Total (tons)	Daily (lb/day)	Total (tons)	Daily (lb/day)
LODI STATION	6	50%	200000	0.04	1.2939	0.01	0.1865	0.05	1.48
LODI STATION - SOUTH ALTERNATIVE	6	50%	230000	0.05	1.4879	0.01	0.2145	0.05	1.70
CITY COLLEGE STATION	3	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
MIDTOWN SACRAMENTO STATION	3	50%	150000	0.03	1.9408	0.00	0.2798	0.04	2.22
OLD NORTH SACRAMENTO STATION	6	50%	210000	0.04	1.3586	0.01	0.1958	0.05	1.55
NATOMAS / SACRAMENTO AIRPORT STATION	3	50%	238000	0.05	3.0794	0.01	0.4439	0.06	3.52
NATOMAS MAINTENANCE & LAYOVER FACILITY	24	50%	315000	0.07	0.5095	0.01	0.0734	0.08	0.58
TRACK CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN			0						
RD	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
TRACK CURVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
TRACK CURVE RECONSTRUCTION SOUTH OF DESMOND RD	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
TRACK CURVE RECONSTRUCTION NORTH OF ELK GROVE STATION	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
HAMMER LANE SIDING UPGRADE	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
THORNTON SIDING UPGRADE & EXTENSION	2	50%	1400	0.00	0.0272	0.00	0.0039	0.00	0.03
PHILLIPS SIDING UPGRADE & EXTENSION	1	50%	1400	0.00	0.0543	0.00	0.0078	0.00	0.06
POLLOCK SIDING UPGRADE	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
SOUTH SACRAMENTO SIDING UPGRADE	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00
DEL PASO SIDING UPGRADE & EXTENSION	6	50%	9200	0.00	0.0595	0.00	0.0086	0.00	0.07
LODI SIDING	4	50%	10070	0.00	0.0977	0.00	0.0141	0.00	0.11
NEW CROSSOVER	0	50%	0	0.00	0.0000	0.00	0.0000	0.00	0.00

*Assumed paving to occur during structures phase except where noted by *, in which it occurs during rail work phase.

Days of work per week: Average Workdays per Month:

5 21.5

Offidie On-Raod ConstructionVehicle Emissions (Exhaust)

												Emissi	on Factors (g)	inile) ³																ally Emission	(lh/day)					Daily Er (metric b	missions tormiday
Vehikle Type	Trips / Day ¹	Miles / Day ²	ROG_ RUNEX	ROG_ STREX	CO_ RUNEX	CO_ STREX	NOX_ RUNEX	NOX_ STREX	SO2_ RUNEX	SO2_ STREX	PM10 Fagilive Dast ⁴	PM10_ RUNEX	PMI0_ STREX	PM10 Total	PM2.5 Fugitive Dust ⁴	PM2.5_ RUNEX	PM2.5_ STREX	PM2.5 Total	CO2_ RUNEX	CO2_ STREX	CH4_ RUNEX	CH4_ STREX	N2O_ RUNEX	N2O_ STREX	ROG	CD	NOX	802	PM10 Fugitive Dust	PM10 Eshaust	Total Fu	12.5 ithe ast Eshar		C02	CB4	N20 C0	
SITE WORK																																					
RENTAL DUMP TRUCKS (50% oneite/50% offsite)	8	252	0.221	0.000	0.627	0.000	3.639	1.418	0.000	0.000	1.637	0.093	0.000	1.790	0.425	0.089	0.000	0.515	9972	0	0.010	0.000	0.199	0.000	0.125	0.348	2.017	0.005	0.90	0.052	0.961	0.236 0		525.675		0.094	0.275
Worker Trins	14	235.2	0.016	0.354	0.921	2.715	0.073	0.287	0.003	0.001	0.334	0.002	200.0	0.335	0.099	0.002	0.002	0.092	311.947	65.892	0.004	0.073	0.007	0.032	0.019	0.561	0.047	0.002	0.17	5 0.001	0.175	0.046 0	001 0.0-	143,797	0.004	0.005	0.074
Phase Total																									0.142	0.910	2.093	0.007	1.08	0.055	1.136	0.282 01	0.55 0.55	4 7.99	0.010	0.098	0.544
RAIL WORK																																					_
FLAT IED TRUCK (75% onsite/25% offsite)	2	21,875	0.426	0.000	1.137	0.000	6.503	3.517	0.004	0.037	1.592	0.115	0.000	1.797	0.402	0.110	0.000	0.512	1859,783	0.000	0.020	0.000	0.292	0.000	0.021	0.055	0.329	0.000	0.07	0.006	0.082	0.022 0	005 0.00	\$9,690	0.001	0.014	0.041
PICKUPS (50% opsite/50% offsite)	6	105	0.018	0.405	1.025	3.060	0.099	0.362	0.003	0.001	0.334	0.002	200.0	0.335	0.099	0.001	0.002	0.092	346.517	74,577	0.004	0.064	0.005	0.037	0.000	0.279	0.025	0.001	0.07	7 0.000	0.078	0.021 0	000 0.00		0.002	0.002	0.03
PLAT IED TRACTOR (75% oncire/25% offsite)	2	8.75	0.221	0.000	0.627	0.000	3.639	1.418	0.000	0.000	1.637	0.073	0.000	1.799	0.426	0.089	0.000	0.515	1072.298	0.000	0.010	0.000	0.199	0.000	0.004	0.012	0.076	0.000	0.03	2 0.002	0.033	0.006 0	002 0.0	20.683	0.000	0.003	0.005
Worker Trins	35	638.4	0.016	0.354	0.921	2.715	0.073	0.287	0.003	0.001	0.334	0.002	200.0	0.335	0.099	0.002	0.002	0.092	311.947	65.892	0.004	0.073	0.007	0.032	0.053	1.524	0.127	0.004	0.47	0.002	0.476	0.125 0	002 0.13	444.565	0.012	0.012	0.207
Phase Total																									0.087	1.869	0.561	0.006	0.65	0.010	0.669	0.175 01	0.18	5 6,95	0.015	0.052	0.289
STRUCTURES																																					_
FLAT IED TRUCK (75% onsite/25% offsite)	2	17.5	0.426	0.000	1.137	0.000	6.503	3.517	0.008	0.037	1.592	0.115	0.000	1.797	0.402	0.110	0.000		1859,783	0.000	0.020	0.000	0.292	0.000	0.015	0.044	0.255	0.001	0.06	0.004	0.066	0.035 0	004 0.00	71,752	0.001	0.011	20.0
PICKUPS (50% opsite/50% offsite)	6	24.5	0.018	0.405	1.025	3.060	0.099	0.362	0.003	0.001	0.334	0.002	200.0	0.335	0.099	0.001	0.002	0.092	346.517	74,577	0.004	0.064	0.005	0.037	0.005	0.096	0.000	0.000	0.01	s 0.000	0.018	0.005 0	000 0.00	19,705	0.001	0.001	0.005
Worker Trins	42	672	0.016	0.354	0.921	2.715	0.073	0.287	0.003	0.001	0.334	0.002	200.0	0.335	0.099	0.002	0.002	0.092	311.947	65.892	0.004	0.073	0.007	0.032	0.055	1.604	0.134	0.005	0.45	5 0.0	0.501	0.132 0	002 0.13	467,963	0.012	0.013	0.217
Phase Total																									0.078	1.744	0.411	0.006	0.57	0.007	0.585	0.152 0.1	0.16	1 559	0.014	0.025	0.254
																								Total	0.305	4.523	3.065	0.019	2.33	5 0.070	2,390	0.607 0	067 0.6	1 1955	0.079	0.155	0.88"

These ratios: 1.1. The mather of worker steps is based spaces for mathers of workers have like the Ta-B for each phase orderates the workers accound for a sharing the other source and appearant where the first and a counter orders. In Base 7 and one are usely mathers are strated and accound for the other order order order or the other orders. The Base 7 and one are usely mathers are strated and accound for the other Base 7. Source (and a strate order order or the other other) mathers are strated and accound for the accounter (same) (same) (BASLUPT), (1272) and (1284) same first for strateging and the (364) different for the strate part (BASLUPT), (1272) and (1284) same first for strateging and the (364) different for the strate part (BASLUPT), (1272) and (1284) same first for strateging and the (364) different for the strateging theory in the other (BASLUPT), (1272) and (1284) same first for strateging and the (364) different for the strateging theory in the other (1284) and (

Assumptions		
Worker Trip length	16.8	Average Workdays per Year:
		Months per Year
Conversion Factors		
mans per pound	453.59237	
counds per ton	2000	
counds per metric ton	2204.62262	
Johal Warming Potential		
302		
×	25	
	298	

Project Element		Construction	Activity Duration (years)					Duly In	ulosions (Ib)da	50				Dally Emissions (metric tons/day)	dax Annual Emissio	ns (tons/year)												Total Emissions (metric tons)
	Total	Site Work	Rail Work	Structures	ROG	co	NOX	502	PM10	PM2.5	C02	C114	N20	C02e	ROG	CD	NOX	502	PM10 Fugikive Dust	PM10 Exhaust	PM10 Total P	PM2.5 ugitive Dust	PM2.5 Exhaust	PM2.5 Total	CD2	CH4	N20	C02e
ODI STATION	1.2	1.00	0.08	0.50	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.02	0.25	0.30	0.00	0.29	0.007	0.29	0.05	0.007	0.06	141.98	0.00	0.00	128.81
ODI STATION - SOUTH ALTERNATIVE	1.2	1.00	0.08	0.50	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.02	0.25	0.30	0.00	0.29	0.007	0.29	0.05	0.007	0.05	141.98	0.00	0.00	128.81
TTY COLLEGE STATION	0.7	0.88	0.33	0.25	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.01	0.18	0.13	0.00	0.09	0.003	0.30	0.02	0.003	0.03	78.65	0.00	0.00	71.3
dDTOWN SACRAMENTO STATION	1.0	0.82	0.33	025	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.02	0.24	0.25	0.00	0.15	0.006	0.17	0.04	0.005	0.05	128.02	0.00	0.01	116.14
ALD NORTH SACRAMENTO STATION	12	0.82	0.33	0.52	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.02	0.29	0.28	0.00	0.15	0.007	0.29	0.05	0.005	0.05	146.20	0.00	0.00	132.63
SATOMAS / SACRAMENTO AIRPORT STATION	0.8	0.67	0.17	0.25	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.02	0.18	0.21	0.00	0.13	0.005	0.13	0.03	0.005	0.04	97.78	0.00	0.00	\$8.71
SATOMAS MAINTENANCE & LAYOVER FACILITY	2.5	1.17	0.67	2.00	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.05	0.75	0.47	0.00	0.37	0.011	0.38	0.10	0.000	0.11	315.77	0.01	0.02	286.46
TRACK CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN RD	0.1	0.04	0.04	0.00	0.23	2.78	2.65	0.01	1.74	0.05	1.81	0.45	0.05	0.52	0.00	0.02	0.01	0.00	0.00	0.000	0.00	0.00	0.000	0.00	7.56	0.00	0.00	6.8
TRACK CURVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD	0.1	0.04	0.04	6.00	0.23	2.78	2.65	0.01	1.74	0.05	1.81	0.45	0.05	0.52	0.00	0.02	0.01	0.00	0.00	0.000	0.00	0.00	0.000	0.00	7.55	0.00	0.00	6.9
TRACK CURVE RECONSTRUCTION SOUTH OF DESMOND RD	0.1	0.04	0.04	0.00	0.23	2.78	2.65	0.01	1.74	0.06	1.81	0.45	0.05	0.52	0.00	0.02	0.01	0.00	0.00	0.000	0.00	0.00	0.000	0.00	7.55	0.00	0.00	6.97
TRACK CURVE RECONSTRUCTION NORTH OF ILK GROVE STATION	0.1	0.04	0.04	0.00	0.23	2.78	2.65	0.01	1.74	0.06	1.81	0.45	0.05	0.52	0.00	0.02	0.01	0.00	0.00	0.000	0.00	0.00	0.000	0.00	7.55	0.00	0.00	6.97
BAMMER LANE SIDING UPGRADE	0.2	0.08	0.08	0.00	0.23	2.78	2.65	0.01	1.74	0.06	1.81	0.45	0.05	0.52	0.00	0.05	0.05	0.00	0.02	0.001	0.02	0.00	0.001	0.01	15.12	0.00	0.00	13.7
THORNTON SIDENG UPGRADE & EXTENSION	0.3	0.17	0.17	0.00	0.23	2.78	2.65	0.01	1.74	0.06	1.81	0.45	0.05	0.52	0.00	0.05	0.05	0.00	0.04	0.001	0.04	0.01	0.001	0.01	30.24	0.00	0.00	27.43
HILLIP'S SIDING UPGRADE & EXTENSION	0.2	0.08	0.08	0.00	0.23	2.78	2.65	0.01	1.74	0.05	1.81	0.45	0.05	0.52	0.00	0.05	0.05	0.00	0.02	0.001	0.02	0.00	0.001	0.01	15.12	0.00	0.00	13.7.
YOLLOCK SIDING UPGRADE	0.2	0.08	0.08	0.00	0.23	2.78	2.65	0.01	1.74	0.05	1.81	0.45	0.05	0.52	0.00	0.05	0.05	0.00	0.02	0.001	0.02	0.00	0.001	0.01	15.12	0.00	0.00	13.7.
SOUTH SACRAMENTO SIDING UPGRADE	0.3	0.08	0.25	0.00	0.23	2.78	2.65	0.01	1.74	0.05	1.81	0.45	0.05	0.52	0.00	0.07	0.04	0.00	0.05	0.001	0.05	0.01	0.001	0.01	28.90	0.00	0.00	26.27
2EL PASO SIDING UPGRADE & EXTENSION	1.0	0.50	0.50	0.50	0.31	4.52	3.06	0.02	2.31	0.07	2.39	0.61	0.07	0.68	0.02	0.29	0.20	0.00	0.15	0.005	0.15	0.04	0.004	0.04	127.08	0.00	0.01	115.29
ODI SIDING	0.7	0.22	0.22	0.00	0.23	2.78	2.65	0.01	1.74	0.05	1.81	0.45	0.05	0.52	0.01	0.12	0.12	0.00	0.05	0.003	0.05	0.02	0.003	0.02	60.45	0.00	0.01	54.80
NEW CROSSOVER	0.2	0.08	0.08	0.00	0.23	2.78	2.65	0.01	1.74	0.05	1.81	0.45	0.05	0.52	0.00	0.05	0.05	0.00	0.02	0.001	0.02	0.00	0.001	0.01	15.12	0.00	0.00	13.77
			Densition (months)		"Note that some location " To estimate maximum											ios.												
		Construction Phase Site Work	Rail Work	Structures	1																							
	Total	Sile Work	Kill WCCK	Structures																								

	Construction Phys	e Duration (months)	
Total	Site Work	Rail Work	Structures
14	12	1	6
14	12	1	6
14	12	0	6
14	12	0	6
ĸ	4	4	3
12	10	4	3
14	10	4	6
14	12	k	6
10	1	2	3
10	6	1	3
30	14	8	18
30	14	8	36
1	0.5	0.5	0
1	0.5	0.5	0
1	0.5	0.5	0
1	0.5	0.5	0
2	1	1	0
4	2	2	0
2	1	1	0
2	1	1	0
4	1	k	0
12	6	6	6
ĸ	4	4	0
ĸ	3	k	4
,	1	1	0

260 12

Officite IDIFAC On-Read Environme Factors IDIFAC2017 (vil 0.2) Environme Rears Region STAN XDAQUIN Calondar Varz 2021 Scansor Annual Vehicle Classification EMFAC2011 Consortions Units: anito-Anitor for TME Testication for Tritos, explicit

	stay for Trips, gamile for RUNEX, PMBW and PMTW, gamp for STREX, HTS	K and RUNES, givinke and preserve
		NMT
		tooligit
Region	Caleadar Y. Vohicle Ca Model Your Speed Fael Worker Vohicles	Population WIT Top. Reality Role RUN ROG RELD ROG STREA ROG RUN ROG RELD ROG RUN ROG RUN ROG RELD ROG RUN ROG
SAN JOAQUIN	2021 LDA Aggregated Aggregated GAS	286257 2221 1131154 114011 2970424 000254 0 2102159 0 244093 0 221621 2.0701 0.005565 0 0.21059 0.24625 0.021759 0.246093 0 0.00556 0.021759 0.246093 0 0.00556 0.021759 0.246093 0 0.00556 0.021759 0.00556 0.021759 0.00556 0.02101 0 0.02265 0.00270
SAN JOAQUIN SAN JOAQUIN	2021 LDA Aggregated Aggregated DSL 2021 LDA Accessed Accessed ELEC	222441CT1 911211 1151474 00040000 01125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAN JOACUN	2021 LDTI Aggregated Aggregated GAS	
SAN JOAQUIN	2021 LDTI Aggregated Aggregated DSL	24.7566439 441.5487 85.75895 2.3125645 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAN JOAQUIN	2021 LDTI Aggregated Aggregated ELEC	96.96662313 2441.3492 442.4944 40.9022075 0 0 0 0.02068588 0 0.0072524 0.02467 0 0 0.0008588 0 0.0072524 0.02467 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAN JOAQUIN	2021 LDT2 Aggregated Aggregated GAS	92712007 SIA12007 SIA12007 SIA1207 SIA
SAN JOAQUIN SAN JOAQUIN	2021 LDT2 Aggregated Aggregated DSL 2021 MDV Accessed Accessed GAS	
SAN JOACUN	2021 MDV Accreated Accreated DSL	
	Pickup Trucks & SUVs	
SAN JOAQUIN	2021 LDT2 Aggregated Aggregated GAS	93274.20007 3447688 430009.5 0.001341 0 0.001341 0.001342 0 0.001341 0.001341 0.001341 0
SAN JOAQUIN	2021 LDT2 Aggregated Aggregated DSL. Hatbed Tracks	
SAN JOAQUIN	2021 T7 Sinele (Aggregated Aggregated DSL	482.927.974 2525.522 1 0 400007 1.576025 0 0 0 0 0 46501 1.76461 0 0 0 0 0 1.13724 22.04249 0 6.50004 22.5728 1.59605 1.952710 2017.772 0 0.01978 0.07255 0 0.115290 0.0255 0 0.009 0.00456 0.00513 0.01757 0.03701 0 0.615822 0
SAN JOAOUIN	Damp Track 2021 Té instate Aggregated Aggregated DSL	
	Haul Trucks	
SAN JOAQUIN	2021 T7 Single Aggregated Aggregated DSL	\$66,6934503 \$5857.51 \$661.607 0 0 0 0 0 0 0.05574 0.05148 0 0.05974 0.05146 27.37722 0 4.55521 2568.259 0 0.059636 0.059797 0 0.0868852 0.01568 0 0.0514 0.001132 0.030030 0 0.059 0.02566 0.05574 0.05148 0 0.25979 0.0568524 0
		Enciolar Factors (Paille)
		Viaids Bod, Bod, CO. VO. NO. SO. SO. SO. Partial Part
		EVEL 2 EV
		No. 4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
		P.4arTed. 0017938 048991 0986779 18999 0987731 032102 010121 032102 010138 000138 000138 000138 000138 000137 000138 000137 000138 000137 000138
		1/1 00/17/81 deverse deverse 1 dever
		Genera celle indicate calculations unles BMFAC 2007 data.
		* NF
Burley	Checker Market C. Market Your South Start	having la
Region	Calender V. Volicito Ca Model Your Speed Fael Worker Volicito	
Sacramento (SV)	Worker Volicios 2021 LDA Appreciated Appreciated GAS	
Sacramento (SV) Sacramento (SV)	Weder Volicies 2021 LDA Aggregated Aggregated GAS 2021 LDA Accretation Accretation DSL	
Sacramento (SV) Sacramento (SV) Sacramento (SV)	Weeker Volticles 2021 LDA Aggregated Aggregated GAS 2021 LDA Aggregated Aggregated DSL 2021 LDA Aggregated ELEC	
Sacramento (SV) Sacramento (SV)	Weder Volicies 2021 LDA Aggregated Aggregated GAS 2021 LDA Accretation Accretation DSL	
Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV)	Winker Vibicins 2021 LDA Aggregelind Aggregelind DSL 2021 LDA Aggregelind Aggregelind DSL 2021 LDA Aggregelind Aggregelind DSL 2021 LDT Aggregelind Aggregelind GAS 2021 LDT1 Aggregelind Aggregelind DSL 2021 LDT1 Aggregelind Aggregelind DSL	
Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV)	Winker Visiksin 2021 LDA Aggregnind Aggregnind GAS 2021 LDA Aggregnind Aggregnind DEL 2021 LDA Aggregnind Aggregnind ELEC 2021 LDTI Aggregnind Aggregnind GAS 2021 LDTI Aggregnind Aggregnind DEL 2021 LDTI Aggregning Aggregnind DEL 2021 LDTI Aggregning Aggregnind CAS	
Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV) Sacramento (SV)	Winker Velisiciu Aggregatiet GAS 2021 LDA Aggregatiet Aggregatiet DSL 2021 LDA Aggregatiet Aggregatiet DSL 2021 LDA Aggregatiet BLEC DSL 2021 LDT Aggregatiet Aggregatiet CAS 2021 LDT Aggregatiet CAS DS 2021 LDT Aggregatiet CAS DS	
Sacramenio (SV) Sacramenio (SV) Sacramenio (SV) Sacramenio (SV) Sacramenio (SV) Sacramenio (SV) Sacramenio (SV) Sacramenio (SV)	Weiter Velacies 2221 LA Aggregimiet Aggregimiet CAS 2021 LA Aggregimiet Aggregimiet DBL 2021 LA Aggregimiet Aggregimiet DBL 2021 LA Aggregimiet Aggregimiet DBL 2021 LDT Aggregimiet Aggregimiet CAC 2021 LDT Aggregimiet Aggregimiet ELEC	
Seconverto (5V) Seconverto (5V)	Weaker Velacities Aggregated GAS 2021 LDA Aggregated Aggregated D2A 2021 LDT Aggregated D2A D2A 2021 LDTA Aggregated D2A D2A	
Sacramento (37) Sacramento (37) Sacramento (37) Sacramento (37) Sacramento (37) Sacramento (37) Sacramento (37) Sacramento (37) Sacramento (37)	Windar Velacitian Aggregaletic GAS 2021 ILDA Aggregaletic GAS 2021 ILDA Aggregaletic DEL 2021 ILDA Aggregaletic DEL 2021 ILDA Aggregaletic DEL 2021 ILDT Aggregaletic DEL	
Seconverto (5V) Seconverto (5V)	Weisser/Veiksien 2011 (LD. Argangemit Argangemit 2005) 2021 (LD. Argangemit Argangemit 2005)	
Sacamento (2V) Sacamento (2V)	Withort Validation Sector Validation 2011 Link, Argangeelen Argangeelen Cold, 2021 Link, Argangeelen Argangeelen C	
Sacamento (SV) Sacamento (SV)	Weisser Verlacie 2011 (LA Argargent Argargent Cold 2021 (LT Argargent Argargent Cold	
Sacamento (2V) Sacamento (2V)	Nuclevision Security Security	
Sacramento (21) Sacramento (21)	Nutrie Status Status<	
Sacamento (SV) Bacamento (SV)	Nuclevision Security Security	

										Eniode	a Factors (elmite)*										
Vehicle Category	ROG_ RUNEX	ROG_ STREX	CO_ RUNEX	CO_ STREX	NOX, RUNEX	NOX. STREX	SO2_ RUNEX	SO2_ STREX	PM10 Fugitive Dust ⁴	PM10_ RUNEX	PMI0_ STREX	PM10 Total	PM2.5 Fugitive Dust	PM2.5_ RUNEX	PM2.5_ STREX	PM2.5 Tetal	CO2_ RUNEX	CO2_ STREX	CIH_ RUNEX	CH4_ STREX	N2O RUNEX	N20_ STREX
Worker Vehicle	0.016422	0.34\$707	0.9210006	2.7151	0.0716806	0.2902456	0.0030595	0.0006452	0.04475	0.001635	0.002101	0.015485	0.01775	0.001506	0.001932	0.021189	309,2913	65.49957	0.003891	0.07169	0.006723	0.071128
Pickup Track	0.019072	0.291868	1.0282799	3.0525	0.0920621	0.35473	0.0034253	0.0007365	0.04475	0.00155	0.0001451	0.018252	0.01775	0.001427	0.001794	0.020971	3465169	74.42712	0.004774	0.061128	0.007705	0.036357
SUV	0.019072	0.291868	1.0282799	3.0525	0.0920621	0.35473	0.0034253	0.0007365	0.04475	0.00155	0.0001451	0.018252	0.01775	0.001427	0.001794	0.020971	3465169	74.42712	0.004774	0.061128	0.007705	0.036357
Flatbed Track	0.426077	0	1.1372845	0.0000	6.4922476	3.5166048	0.0175703		0.09774	0.115259	0	0.212999	0.03546	0.110273	0	0.145733	1859.783	0	0.019755	0	0.292332	0
Dump Track, Water Track, Cement Track	0.159921		0.468543	0.0000	2 9152549	1.4129258	0.0097572		014734	0.066529		0.200010	0.0586	0.063795		0123655	1022.75		0.007341		0.167120	
	0.205588	0	0.7040945	0.0000	4.2202234	2.9957971	0.0144567	ő		0.067\$75	0	0.155615	0.03546	0.056074	0	0.119534	1533.394		0.00%49		0.241028	0

Control Model Advances Factors for Sandre Call David David Televise in UNIXEE Year Net Enhant TGE Earch TGE Call Of March 1997 Enhant 2021 1002 1 5002 1 5001 1000 1000 1000 ¹Uae of adjustment lactors accounts for implementation of the SAFE Vehicle Rule

Offsite EMFAC On-Road Emission Factors

EMFAC2017 (v1.0.2) Emission Rates Region Type: County Region: SAN JOAQUIN Calendar Year: 2021 Season: Annual Vehicle Classification: EMFAC2011 Categories Units: miles/day for VMT, g/mile for RUNEX, PMBW and PMTW

				% VMT	
Region	Calendar Year Vehicle Category Model Year Speed	Fuel	VMT	(Weight Factor)	ROG_RUN TOG_RUN CO_RUNE NOX_RUNI SOX_RUNI CO2_RUNI CH4_RUNI PM10_RUN PM2_5_RU N2O_RUNEX
	Pickup Trucks & SUVs				
SAN JOAQUIN	2021 LDT2 Aggregated	5 GAS	126.4129292	0.994277319	0.1243005 0.1813156 2.0069118 0.1860717 0.0082422 832.89565 0.0303866 0.0107255 0.0098619 0.0145421
SAN JOAQUIN	2021 LDT2 Aggregated	5 DSL	0.727584641	0.005722681	0.2605718 0.2966436 2.1832402 0.1579255 0.0066052 698.69671 0.0121031 0.018326 0.0175333 0.1098254
	Flatbed Trucks			1	
SAN JOAQUIN	2021 T7 Single Unit Cons Aggregated	5 DSL	35085.4027	1	1.696794 1.93167 3.719777 15.64866 0.01757 3631.987 0.078812 0.211127 0.201994 0.570898
	Dump, Water, Cement Truck			1	
SAN JOAQUIN	2021 T6 instate heavy Aggregated	5 DSL	2522.346665	1	1.5700147 1.7873422 2.7000179 10.394601 0.0228337 2416.9054 0.0729231 0.2390995 0.2287562 0.3799039
	Haul Truck				
SAN JOAQUIN	2021 T7 Single Aggregated	5 DSL	794.1150023	1	1.5757755 1.7939005 3.6353612 14.150194 0.0345829 3660.5312 0.0731907 0.1914129 0.1831324 0.5753845

				Emissio	n Factors (g/mi	ile)			
Vehicle Category	ROG	со	NOX	SO2	PM10 Exhaust	PM2.5 Exhaust	CO2	CH4	N2O
Pickup Truck	0.125105344	2.008924795	0.18594784	0.00823281	0.010778712	0.009914754	832.1276694	0.0302819	0.0150874
SUV	0.125105344	2.008924795	0.18594784	0.00823281	0.010778712	0.009914754	832.1276694	0.0302819	0.0150874
Flatbed Truck	1.696793683	3.719776898	15.648661	0.017570304	0.21112743	0.20199415	3631.98701	0.0788117	0.5708978
Dump, Water, Cement Truck	1.570014675	2.70001787	10.3946006	0.022833724	0.239099527	0.228756187	2416.905398	0.0729231	0.3799039
Haul Truck	1.575775535	3.635361192	14.1501937	0.034582884	0.191412851	0.183132415	3660.531237	0.0731907	0.5753845

Green cells indicate calculations using EMFAC 2017 data.

M2_5_RUN2O_RUNEX
0.009482 0.014098
0.014134 0.111951
0.201994 0.570898
0.161823 0.370751
0.171595 0.555794

				Emissio	n Factors (g/mi	ile)			
Vehicle Category	ROG	со	NOX	SO2	PM10 Exhaust	PM2.5 Exhaust	CO2	CH4	N2O
Pickup Truck	0.117184448	1.929559993	0.17577642	0.008307118	0.010348031	0.009517997	839.6446386	0.0285081	0.0146717
SUV	0.117184448	1.929559993	0.17577642	0.008307118	0.010348031	0.009517997	839.6446386	0.0285081	0.0146717
Flatbed Truck	1.696793683	3.719776898	15.618722	0.034313212	0.21112743	0.20199415	3631.98701	0.0788117	0.5708978
Dump, Water, Cement Truck	1.123055962	2.116495189	8.93419815	0.022283592	0.169139663	0.161822756	2358.674979	0.052163	0.3707509
Haul Truck	1.536111408	3.510967695	13.7285549	0.03340544	0.179354103	0.171595324	3535.901112	0.0713484	0.5557944

Green cells indicate calculations using EMFAC 2017 data.

CARB Off-Model Adjustment Factors for Gasoline Light Duty Vehicle Emissions in EMFAC2017.

Year Nox Exhaust TOG Evaporative TOG Exhau PM Exhaust CO Exhaust

2021 1.0002 1.0001 1.0002 1.0009 1.0005

*Use of adjustment factors accounts for implmentation of the SAFE Vehicle Rule Part One Source: https://ww3.arb.ca.gov/msei/emfac_off_model_adjustment_factors_final_draft.pdf

Fugitive Dust Emission Factors			
Truck Loading Fugitive Dust Emission Factors EF ₀ = k × (0.0032) × ((U/S) ^{1.5})/((M/2) ^{1.6})			
Variable	Amount	Units	
EF (PM ₂₀)	0.0001	lb/ton	
EF (PM ₂₃)	0.00001	lb/ton	
k (PM ₁₂)	0.35	factor	
k (PM _{2.3})	0.053	factor	
U (mean wind speed)	3.5	miles/hr	CalEEMod default value for Sacramento County (is greater than San Jaquin County of 2.7 mph)
M (moisture content)	12	percent	USEPA, AP-42, July 1998, Table 11.9-3 Typical Values for Correction Factors Applicable to the Predictive Emission Factor Equations
Soil density		tons/cy	CalEEMod default
Rip rap density	0.05	tons/sf	
E (lbs) = EF (lb/ton) x TP (tons)			
Cut/Fill Truck Loading Emissions:		EF (PM10) as b/cy EF (PM2.5) as b/cy	
Demolition Truck Loading Emission:		EF (PM10) as lb/sf EF (PM2.5) as lb/sf	

Bulldozing, Scraping								
M10 Emission Factor (b/m) = 0.75 x (aik contant (1%) ¹⁴ / (moisture) ¹⁴ M2.5 Emission Factor (b/m) = 0.60 x (aik contant (1%) ¹⁷ / (moisture) ¹³								
deence: AP-42, Table 11.9-1, Jdy 1998								
Parameter	Value	Basis						
Sit Content	6.9	USEPA, AP-42, July 1998, Table 11:9-3 Typical Values for Correction Factors Applicable to the Predictive Emission Factor Equations						
Sit Content Moisture	6.9	USEPA, AP-42, July 1998, Table 11.9-3 Typical Values for Correction Factors Applicable to the Predictive Emission Factor Equations USEPA, AP-42, July 1998, Table 11.9-3 Typical Values for Correction Factors Applicable to the Predictive Emission Factor Equations						
Silt Content	6.9	USEPA, AP-42, July 1998, Table 11:9-3 Typical Values for Correction Factors Applicable to the Predictive Emission Factor Equations						

5	S: mean vehicle speed (mph)	Per Data Sheet
1.275	EFran	
2.236067977	EFTER	
0.6	Fmm	default AP-42 value
0.031	Fma	default AP-42 value
0.765	EFmm (lb/VMT)	
0.069318107	EFPHER (B/VMT)	
0.08	VMT Calculation Factor (site acres / 12 ft)	
43560	sq. ft. per acre	
0.5259375	FF (Ib/acre)	calculated
		calculated
	1.275 2.236067977 0.08 0.031 0.765 0.069318107 0.08 43560 5280 0.5259375	5 5 man which speed (sph) 1.27 67 ma 2.200777 57 0.07 Far 0.01

Demolition Fugitive Dust EFp = k x (0.0032) x ((U/S) ^{1.5})/((M/2) ^{1.6})			
Variable	Amount	Units	1
EF (PM ₂₀)	0.0007	lb/ton of debris	
EF (PM ₂₃)	0.00011	lb/ton of debris	
k (PM ₁₂)	0.35	factor	
k (PM _{2.5})	0.053	factor	
U (mean wind speed)	3.5	miles/hr	CalEEMod default value for Sacramento County (is greater than San Jaquin County of 2.7 mph)
M (moisture content)	2	percent	CalEEMod default
Building weight	0.046	tons/sq.ft.	CalEEMod default
E (lbs) = EF (lb/ton) x TP (tons)			
		EF (PM10) as lb/sq.ft. EF (PM2.5) as lb/sq.ft.	

Paved Road Dust	EF _{DART} = [(k(s	L) ⁰¹¹ x (W) ¹⁰²](1 · P/4N))	
Source: AP-42 Section 13.2.1 (Paved Roads) - http://ww	w.epa.gov/ttnchie1/ap42/ch13/final/c1	3s0201.pdf	
Variable	Value	Description	
		particle size multiplier for particle size rangeand	
k (PM10)		units of interest (lb/VMT)	
		particle size multiplier for particle size rangeand	
k (PM2.5)	0.00054	units of interest (lb/VMT)	
sL		road surface silt loading (g/m ²)	
w	2.4	average weight (tons) of vehicles (2.4 tons)	
w	12	haul truck tons	
		number of "wet" days with at least 0.254 mm (0.1	
		inches) of precipitation during the averaging	CalEEMod data for San Joaquin County (less than that for Sacramento Count
P	51	period	[58days], which leads to higher EF [more conservative])
N	365	number of days in averaging period	
Pickup and Worker			
EF (PM10)	0.000637964	Ib/vMT	
EF (PM2.5)	0.000156591	lb/vMT	
Haul Truck			
EF (PM10)	0.003294168	Ib/vMT	
FF (PM2 5)	0.000808568	IN/VMT	

1.8	(Particle size multiplier for PM10)	
0.18	(Particle size multiplier for PM2.5)	
2.9	Unpaved surface material sit content (%)	Source: spreadsheet link at 4th bullet: https://www3.eps.gov/trichie1/lip42/ch13/ebitedic13x02-2.htr used by EPA for National Emissions Inventory.
5	mean vehicle speed	
1	for PM10 and PM2.5	
02	for PM10 and PM2.5	
0.5	for PM10 and PM2.5	
0.00047	for PM10	
0.00036	for PM2.5	
12	Moisture Content	
0.126014699	Ib/VMT	
0.01228847	Ib/VMT	
	0.18 29 5 5 0.2 0.5 0.00047 0.0005 12 0.126014699	13 Particle can indigate for PRI2 5 33 Uppead unline random and a contrel (N) 34 Internative land (N) 16 for PRI13 and PRI25 23 for PRI13 and PRI25 23 for PRI13 and PRI25 24 for PRI13 and PRI25 25 for PRI14 and PRI25 200006 for PRI25

* Uncontrolled emissions (bidsy) = Emission factor (bim) x Number x Dailymies traveled (mi/whide-day)

⁴ Control efficiency from watering urpaved road twice a day (\$5%) and limiting maximum speed to 15 mph (\$7%), from Table XX-A Miligation Mean Fugitive Dust from Construction & Demolition, http://www.aqmd.gov/cseqahandbook/miligation/lugitive/MM_tugitive.html

* Controlled emissions [Ibiday] = Uncontrolled emissions [Ibiday] x (1 - Control efficiency [Ni])

			ROG	NOX	CO	PM10	PM2.5
	Low HP	High HP	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)	(g/bhp-hr)
Tier 4	25	49	0.12	2.75	4.1	0.008	0.008
Tier 4	50	74	0.12	2.74	3.7	0.008	0.008
Tier 4	75	119	0.06	0.26	3.7	0.008	0.008
Tier 4	120	174	0.06	0.26	3.7	0.008	0.008
Tier 4	175	299	0.06	0.26	2.2	0.008	0.008
Tier 4	300	599	0.06	0.26	2.2	0.008	0.008
Tier 4	600	750	0.06	0.26	2.2	0.008	0.008
Tier 4 (except generator sets for NOx)	751	2000	0.06	2.24	2.6	0.016	0.016
Tier 4 (generator sets for NOx)	751	1200	0.06	0.5	2.6	0.016	0.016

Source: Tier 4 emissions factors from CalEEMod User Guide Table D 3.5, which provides tiered engine emission factors based on Carl Moyer Standards. http://www.aqmd.gov/caleemod/user's-guide/users-tips

Operational Emissions Summary

Project Operational Emissions:

			Γ	Daily Emissio	ons (lb/day)						Max Annu	al Emissions	(tons/year)				Total Emissions (metric tons)
Air District SJVAPCD	Operational Activity	ROG	CO	NOX	SO2	PM10	PM2.5	ROG	CO	NOX	SO2	PM10	PM2.5	CO2	CH4	N20	CO2e
	Locomotive Operations	1.40	42.60	33.28	0.15	0.50	0.48	0.25	7.67	5.99	0.03	0.09	0.09	2939.52	0.23	0.07	2692.16
	Station Electricity Emissions		-	-	-				-	-			-	9.16	0.00	0.00	9.22
	Station Waste Emissions		-	-	-				-	-			-	1.74	0.09	0.00	3.90
	Sub-total	1.40	42.60	33.28	0.15	0.50	0.48	0.25	7.67	5.99	0.03	0.09	0.09	2950.42	0.32	0.08	2705.28
	Air District Threshold	100.00	100.00	100.00	100.00	100.00	100.00	10.00	100.00	10.00	27.00	15.00	15.00 -	-	-	-	
	Exceed Threshold?	No	No	No	No	No	No	No	No	No	No	No	No				
SMAQMD																	
-	Locomotive Operations	1.84	55.95	43.71	0.20	0.66	0.64	0.33	10.07	7.87	0.04	0.12	0.11	3860.56	0.30	0.10	3535.69
	Station Electricity Emissions		-	-	-				-	-			-	27.35	0.00	0.00	27.44
	Station Waste Emissions		-	-	-				-	-			-	3.83	0.19	0.00	8.57
	Airport Shuttle Service	0.00	0.01	0.12	0.00	0.11	0.03	0.00	0.00	0.02	0.00	0.02	0.01	51.78	0.00	0.01	49.21
	Sub-total	1.84	55.96	43.83	0.20	0.76	0.67	0.33	10.07	7.89	0.04	0.14	0.12	3943.52	0.50	0.11	3620.92
	Air District Threshold	65.00 -		65.00 -		80.00	82.00		-	-		14.60	15.00 -	-	-		1100.00
	Exceed Threshold?	No	1	No	N	No I	No]	No	No			Yes	

Net Operational Emissions Accounting for Displaced VMT

			Daily Emissi	ons (lb/day)						Max Ann	ual Emission	s (tons/year)				Total Emissions
																(metric tons)
On-Road Emissions Avoided Due to VMT Displaced by Rail Ridership Increase	ROG	CO	NOX	SO2	PM10	PM2.5	ROG	CO	NOX	SO2	PM10	PM2.5	CO2	CH4	N20	CO2e
SJVAPCD	(1.50)	(111.01)	(6.97)	(0.45)	(57.12)	(15.33)	(0.27)	(19.98)	(1.25)	(0.08)	(10.28)	(2.76)	(8,257.83)	(0.07)	(0.15)	(7,532.40)
SMAQMD	(1.97)	(145.79)	(9.15)	(0.60)	(75.01)	(20.13)	(0.36)	(26.24)	(1.65)	(0.11)	(13.50)	(3.62)	(10,845.27)	(0.09)	(0.19)	(9,892.53)
Net Regional Emissions																
(Project Direct Emissions - VMT Displaced Emissions Reductions)																
SJVAPCD	(0.10)	(68.41)	26.31	(0.30)	(56.62)	(14.84)	(0.02)	(12.31)	4.74	(0.05)	(10.19)	(2.67)	(5,307.41)	0.25	(0.07)	(4,827.12)
SMAQMD	(0.13)	(89.83)	34.68	(0.39)	(74.25)	(19.46)	(0.02)	(16.17)	6.24	(0.07)	(13.36)	(3.50)	(6,901.75)	0.40	(0.08)	(6,271.61)

Conversion Factors	
pounds per ton	2000
pounds per metric ton	2204.62262

Project GHG Emission Summary:

Operational Activity		Annual Emis ns per year)	sions	Total Annual GHG Emissions (metric tons per year)
	CO2	CH4	N20	CO2e
Locomotive Operations	6,800	0.53	0.17	6,228
Station Electricity Emissions	37	0.00	0.00	37
Station Waste Emissions	6	0.28	-	12
Shuttle	52	0.00	0.01	49
Sub-total	6,894	0.81	0.18	6,326
On-road Mobile Emission Reductions	(19,103)	(0.16)	(0.34)	(17,425)
Net Project Regional Emissions	(12,209)	0.65	(0.16)	(11,099)

Daily Locomotive Operational Emissions by Air District						Daily In-1	ransit	Emissions (Ib	s/day)				
Air District	ROG		CO	NOX		SO2	PM10		PM2.5	CO2	CH4	N2O	CO2e
SJVAPCD	1.4018	44084	42.60114974		33.28214824	0.153609915		0.499232224	0.484255257	16330.65408	1.280082625	0.416026853	16486.63215
SMAQMD	1.8410	86004	55.94943222		43.71049393	0.201740741		0.655657409	0.635987687	21447.56255	1.681172843	0.546381174	21652.41346

n-Transit Train Operations Emissions											Daily In-Trar	nsit Emis	ssions (Ibs/d	lay)						
	Daily Operational Hour	's HP		Load Factor	RO	G	CO	N	IOX	SO2	PI	W10	PM2.5		02	CH4		N2O	CO2e	
Fotal Daily Operations*		19	4000)	0.47	3.2429	9	98.5506	76.	9926	0.3554	1.15	i49 1	.1202	37778.216	66	2.9613	0.962	4	3813
Calculations account for average idling time and time in each notch power level.																				
• • •																				
Emission Factors																				
			sion Factor	rs (g/bhp-hr)*									Emission F							
ocomotive Application	PM10	HC		Nox	co		HC	R	OG	co	N	0 _x	SO2	P	PM10	PM2.5		002	CH4	
ine Haul (Tier 4)	0.	015	0.04	ļ	1	1.28	8	0.04	0.0	4212	1.28		1 0.0046	15385	0.01	15	0.01455	490.67307	7 0.0384	46153
Source: EPA Emission Factors for Locomotives - Technical Highlights (EPA-420-F-09-025)																				
Notes:																				
Assumes Line-Haul Locomotives with Tier 4 Engines																				
Emission Factors Calculations:	Conversion Fa	ctor																		
ROG is estimated as 1.053 times the EF for HC	1.	053																		
PM10 = PM																				
PM2.5 as a 97% of PM10		97%																		
SO2 Emission Factor (g/gal) = (fuel density) * (64 g SO2 / 32 g S) * (S content of fuel)																				
Fuel density	3	200																		
Sulfur Content of Fuel (15 ppm) (per CARB regulations, CCR Title 13, Div 3, Chapter 5,																				
Article 2. Section 2281)		15																		
SO2 EF (g/gal)	0	096																		
CO2 is defined by U.S. EPA as 10,206 g CO2/gal fuel		206		CO2 (q/qal) = (fu)	el density)	* (44 g CO2	2/12 a C) * (C content of fu	uel)											
CH4 and N2O Emission Factors per EPA: Table 5 in				0000 (0000) (00		(, (
https://www.epa.gov/sites/production/files/2018-03/documents/emission-																				
actors mar 2018 0.pdf				Carbon content of	f renewab	le diesel =														
CH4 g/gal		0.8		density of fuel		0 g/gal														
N2O g/gal		0.26		39.33 gCO2e/MJ																
Conversion for g/gal to g/hp-hr (divide by) per EPA 2009 Technical Highlights																				
Line Haul and Passenger		20.8																		
Switch		15.2																		
Operational Variables																				
Total New Locomotive Daily Operating Hours	1	3.67																		
Engine Tier		4																		
Engine Her		000																		
Engilern		000																		
% Travel Distance per Air District																				
SJVAPCD		13%																		
SMAQMD		57%																		

0.0125

Horsepower and Load Factor Calculations

	Percent Operating Time at Each Notch Power		Notch Power Level as a Percent of Rated
Votch	Level ¹	(split lule and moving time)	Power ²
Normal Idle	47.40%		
Dynamic Break	6.20%	11.79%	2.10%
Notch 1	7.00%	13.31%	4.50%
Votch 2	5.10%	9.70%	11.50%
Votch 3	5.70%	10.84%	23.50%
Votch 4	4.70%	8.94%	35.00%
Votch 5	4.00%	7.60%	48.50%
Votch 6	2.90%	5.51%	64.00%
Votch 7	1.40%	2.66%	85.00%
Votch 8	15.60%	29.66%	100.00%

Time-weighted engine Load Factor

Idle	0.40%
In-transit	46.8%
Idling and In-Transit	24.8%

Conversion Factors (per EPA 2009 Emission Factors for Locomotives Technical Highlights - Table 3) Conversion Factor (bhp-

Locomotive Application	hr/gal)
Large Line-Haul and Passenger	20.8
Small Line-Haul	18.2
Switching	15.2
Conversion Factors	
grams per pound	453.59237
pounds per ton	2000
pounds per metric ton	2204.62262
Global Warming Potential	
C02	1
Ch4	25
N20	298
Note: GWP are the 100-year GWPs from the IPCC fourth assessment re 2019 GHG emissions inventory.	eport (AR4), consistent with the California Air Resources Board

On-Road Emissions Avoided

			Emissions (lb/day)										Emissions (tons/year) (CO2e measured in MT/year)																
Air District	Displaced Daily VMT	ROG	со	NOX	SO2	PM10 Fugitive Dust	PM10 Exhaust	PM10 Total	PM2.5 Fugitive Dust	PM2.5 Exhaust	PM2.5 Total	CO2	CH4	N2O	CO2e	ROG	со	NOX	SO2	PM10 Fugitive Dust	PM10 Exhaust	PM10 Total	PM2.5 Fugitive Dust	PM2.5 Exhaust	PM2.5 Total	CO2	CH4	N2O	CO2e
SJVAPCD	77,222.44	1.50	111.01	6.97	0.45	56.88	0.23	57.12	15.11	0.21	15.33	45,876.83	0.38	0.81	46,128	0.2743718	20.259157	1.2721632	0.0828145	10.38127029	0.042502533	10.42377282	2.758346534	0.039141876	2.7974884	8372.5207	0.0701381	0.1479588	7,637
SMAQMD	101,418.66	1.97	145.79	9.15	0.60	74.71	0.31	75.01	19.85	0.28	20.13	60,251.48	0.50	1.06	60,581	0.3603412	26.60699	1.670772	0.1087629	13.63404936	0.055819916	13.68986928	3.622623413	0.05140626	3.6740297	10995.895	0.0921146	0.194319	10,030
Total	178,641.10	3.48	256.80	16.13	1.05	131.59	0.54	132.13	34.96	0.50	35.46	106,128.31	0.89	1.88	106,709	0.634713	46.866147	2.9429353	0.1915774	24.01531965	0.098322449	24.1136421	6.380969947	0.090548136	6.4715181	19368.416	0.1622526	0.3422778	17,667

Air District	%	
SJVAPCD		43%
SMAQMD		57%

Displaced VMT:	Annual	Daily			
Due to ACE Ridership	35,804,100	98,093			
Due to San Joaquins Ridership	29,399,900	80,548			
Total	65,204,000	178,641			

TIRCP Application Ridership Data See Appendix A of the TIRCP Application. San Josepin relationship and related WIT reduction: WIT reduction due to increased San Josepins operations under the proposed project are presented in Table of or the TIRCP Application Appendix A.S. The estimated WIT reduction is representative of the defit in total WIT without the project versus total WIT with the project.

ACE ridership and related VMT reduction:

WiT reduction due to increased ACE openations under the proposed in page in a sub-est of the proposed page of the sub-est of the sub-est of the sub-est of the reduction is representative of the sinh in VMT reduction for the total build system without the bacamento enterestive versus with a las comprised of the VMT associated with any righ having at least one end at one of the stations included in the proposed project (which assumes they would be auto trips charterise without the estimation).

365

Operational days per year:

		Emission Factors (g/mile) ³													
Vehicle Category	ROG	со	NOX	SO2	PM10 Fugitive Dust	PM10 Exhaust	PM10 Total	PM2.5 Fugitive Dust	PM2.5 Exhaust	PM2.5 Total	C02	CH4	N20		
LDA, LDT1, LDT2, MDV Fleet Average	0.008830777	0.652049769	0.040945125	0.0026654	0.3341257	0.00136796	0.335493653	0.0887786	0.0012598	0.09003838	269.47321	0.002257425	0.0047621		

LDA_LDTL_DTL_MDV Feler Average 0000800077 000009709 00009709 00000007120 0000000 0000780 0000780 0000 *EMFAC 2017, CARB off-model adjustment factors applied to gasoline powered vehicles. Because activity would be reduced throughout the alignment region, used the maximum potential emissions factor for each pollutant reported by EMFAC for San Joaquin and Sacramento Counties.

Conversion Factors	
grams per pound	453.59237
pounds per ton	2000
pounds per metric ton	2204.62262
Global Warming Potential	
CO2	1
Ch4	25
N20	298
	from the IPCC fourth assessment report a Air Resources Board 2019 GHG emissions

Station Electricity Emissions (Indirect)

				Emissions	(lb/day)		Emiss	sions (metr	ric tons pe	r year)
Station	kWh/month	Electricity Provider	CO2	CH4	N2O	CO2e	CO2	CH4	N2O	CO2e
Lodi	4,019	PG&E	38.74	0.00	0.00	39.01	6.41	0.00	0.00	6.46
Lodi Variant	5,741	PG&E	55.34	0.01	0.00	55.72	9.16	0.00	0.00	9.22
Elk Grove	-	SMUD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Elk Grove Variant	-	SMUD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
City College	287	SMUD	5.55	0.00	0.00	5.57	0.92	0.00	0.00	0.92
Midtown	718	SMUD	13.89	0.00	0.00	13.94	2.30	0.00	0.00	2.31
Old North Sacramento	3,229	SMUD	62.46	0.00	0.00	62.68	10.34	0.00	0.00	10.38
Natomas	4,306	SMUD	83.30	0.00	0.00	83.58	13.79	0.00	0.00	13.84

*Anticipated station electricity use provided by project engineering team.

Station Electricity Emissions by Air District

		Emissions (pounds per	Emissions (metric tons per year)							
	CO2	CH4	N2O	CO2e	CO2	CH4	N2O	CO2e		
SJVAPCD	55.34	0.01	0.00	55.72	9.16	0.00	0.00	9.22		
SMAQMD	165.20	0.01	0.00	165.76	27.35	0.00	0.00	27.44		

Emission Factors

	CO2 (lb/MWh)	CH4 (lb/MWh)	N2O (lb/MWh)
PG&E ¹	294.00	0.033	0.004
SMUD ²	590	0.033	0.004

Notes:

1. PG&E CO2 emission factor based upon PG&E 2018 Corporate Responsibility and Sustainability Report

(http://www.pgecorp.com/corp_responsibility/reports/2018/assets/PGE_CRSR_2018.pdf). Emission factors for CH4 and N2O based upon U.S. EPA eGrid (https://www.epa.gov/sites/production/files/2018-02/documents/egrid2016_summarytables.pdf)

2. SMUD emission factors based upon U.S. EPA eGrid 2016

Conversion Factors	
kWh to MWh	0.001
pounds per ton	2000
pounds per metric ton	2204.62262
average days per month	30.5
days per year	365
Global Warming Potential	
CO2	1
Ch4	25
N20	298
Note: GWP are the 100-year GWPs from	n the IPCC fourth

Station Waste Emissions (Indirect)

		Er	nissions (lb/da	y)		Emissions (metric tons per year)						
	Average Monthly											
Station	Tonnage	CO2	CH4	N2O	CO2e	CO2	CH4	N2O	CO2e			
Lodi	0.58	8.7061	0.4317	0.0000	19.4987	1.44	0.07	0.00	3.23			
Lodi Variant	0.70	10.5073	0.5210	0.0000	23.5329	1.74	0.09	0.00	3.90			
City College	0.05	0.7505	0.0372	0.0000	1.6809	0.12	0.01	0.00	0.28			
Midtown	0.14	2.1015	0.1042	0.0000	4.7066	0.35	0.02	0.00	0.78			
Old North Sacramento	0.54	8.1057	0.4019	0.0000	18.1540	1.34	0.07	0.00	3.01			
Natomas	0.81	12.1585	0.6029	0.0000	27.2310	2.01	0.10	0.00	4.51			

*Anticipated station electricity use provided by project engineering team.

Station Waste Emissions by Air District

		Emissions (pounds pe	r day)		Emissions (metric tons per year)						
	CO2	CH4	N2O	CO2e	CO2	CH4	N2O	CO2e			
SJVAPCD	10.51	0.52	0.00	23.53	1.74	0.09	0.00	3.90			
SMAQMD	23.12	1.15	0.00	51.77	3.83	0.19	0.00	8.57			

Emission Factors

CO2 (tons/ton waste)	CH4 (tons/ton waste)	N2O (tons/ton waste)
0.23	0.011350894	0

Source: CalEEMod

Conversion Factors	
pounds per ton	2000
pounds per metric ton	2204.62262
average days per month	30.5
days per year	365
Global Warming Potential	
CO2	1
Ch4	25
N20	298

Note: GWP are the 100-year GWPs from the IPCC fourth assessment report (AR4), consistent with the California Air Resources Board 2019 GHG emissions inventory.

Shuttle Bus Emissions

											Emissio	ons (lb/day)											Emis	sions (tons/y	ear) (CO2e	measured i	n MT/year)					
Air District	Number of Busses per Trip	One-Way Trips per Day		Vehicle Category	ROG	со	NOX			PM10 Exhaust	PM10 Total	PM2.5 Fugitive Dust	PM2.5 Exhaust	PM2.5 Total	CO2	CH4	N2O	CO2e	ROG	со	NOX	SO2	PM10 Fugitive Dust	PM10 Exhaust	PM10 Total	PM2.5 Fugitive Dust	PM2.5 Exhaust	PM2.5 Total	CO2	CH4	N2O	CO2e
SJVAPCD	0	0	0	Urban Bus (Diesel)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMAQMD	1	14		Urban Bus 8 (Diesel)	0.00013	0.01449	0.12106	0.00272	0.1066	0.00098	0.10758	0.03207	0.00094	0.03301	287.658	0.00945	0.04522	301.3681225	2.46355E-05	0.00265	0.02209	0.0005	0.01945	0.00018	0.01963	0.00585	0.00017	0.00602	52.4975	0.00172	0.00825	49.8949

365 Operational days per year:

						Emission Fa	actors (g/mil	le) ³					
Vehicle Category	ROG	со	NOX	SO2	PM10 Fugitive Dust	PM10 Exhaust	PM10 Total	PM2.5 Fugitive Dust	PM2.5 Exhaust	PM2.5 Total	CO2	CH4	N2O
UBUS (Diesel)	0.000546697	0.058703	0.490305	0.011013381	0.431716	0.003964	0.43568	0.129889	0.003793	0.133682	1164.994	0.038263	0.183121

USDS (Inese) 0.00054669/J 0.005703[0.01101. *Source: EMFAC 2017 v1.0.2 Emission Rates for Sacramento County Calendar Year 2025 (operational year) Note: Fuglitive dust accounts for tire wear and brake wear.

Conversion Factors	
grams per pound	453.59237
pounds per ton	2000
pounds per metric ton	2204.62262
Global Warming Potential	
CO2	1
Ch4	25
N20	298
Note: GWP are the 100-year GWPs fro	m the IPCC fourth

EMFAC2017 (v1.0.2) Emission Rates

EMFAG2017 (vf.0.2) Entries Region Type: County Region: SAN JOACUN Calender Yeer: 205 Season: Annual Vehiclic Destification: EMF/ Units: miles/day for VMT, trip	AC2011 Categories				ay for IDLEX, RESTL and DILIPN											
Ragion SAN JONGUM SAN JONGUM	Calender Year Vahicle Ca 2005 LDA 2005 LDA 2005 LDA 2005 LDA 2005 LDTI 2005 LDTI 2005 LDTI 2005 LDT2 2005 LDT2 2005 MDV 2005 MDV	ater Model Year Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated Aggregated	Speed Fuil Aggregated GAS Aggregated DSL Aggregated DSL Aggregated GAS Aggregated GAS Aggregated GAS Aggregated DSL Aggregated DSL Aggregated DSL Aggregated DSL Aggregated DSL Aggregated DSL Aggregated DSL	Population VMT 8 202007.2 (22206542) 2002.005 (24261.8) 8448.32 (2626.4) 20110.01 (10035.7 (7.22774) 211.91623 (10025.4) (2624.9) 10025.4 (2624.9) 10025.4 (2624.9) 10025.4 (2624.9) 10025.4 (2624.9) 10025.4 (2624.9) 10025.7 (2624.9) 1004.5	B03000 C025027 B1000 C025027 B1000 C025027 B1000 C025027 B1000 C027020	All and a state of the state of th		□ ILLE CD STRE NOL 9LM NC ○ 2.105307 0.027381 ○ 2.27740 0.082847 ○ 0 0.772481 ○ 0 0.772481 ○ 0 0.072481 ○ 0 0.072481 ○ 0 0.072481 ○ 0 0.072481 ○ 0 0.072481 ○ 0 0.020125 ○ 0 0.020125 ○ 0 0.0201254 ○ 0 0.0201254 ○ 0 0.0201254	x IDLE NDx STRE CO2 RLN CC 0 147798 24445224 0 0 10 0	21 102.1 CO.2 STR Ch4 No.01554 0 51.350.07 6.030584 0.030584 0 0 0.030021 0.030535 0 0 0.00021 0.030535 0 0 0.000214 0 0 0 0.000214 0 0 0 0.000224 0 0 0 0.000224 0 0 0 0.000224 0 0 0 0.000224 0 0 0 0.000224 0	44 IDLE CH4 STSE PMI00 RL0 PMI00 RL0 RL0 <t< td=""><td>MOLEX EVEN 0 THE OF OF THE OF THE STORE THE OF OF THE OF THE OF THE OF OF THE</td><td>0 0.001601 0.002 0.015 0 0 0 0.002 0.015 0 0 0.002 0.015 0 0.00265 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015</td><td>75 0.00242 0 75 0.001756 0 75 0.002815 0 75 0.002815 0 75 0.002841 0 75 0.002287 0 75 0.002287 0 75 0.002357 0 75 0.002358 0 75 0.002352 0</td><td>0 0.002208 0.023681 0 0 0 0.02220 0 0 0 0 0 0.02568 0 0 0.02568 0 0 0.02568 0 0 0.02568 0 0 0 0.025143 0 0 0 0.025143 0 0 0 0.025143 0 0 0 0 0.025143 0 0 0 0 0.025143 0 0 0 0 0.025145 0 0 0 0 0.025145 0 0 0 0.025468 0 0 0 0 0.025468 0 0 0 0.025468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Contraction (Contraction) (Con</td></t<>	MOLEX EVEN 0 THE OF OF THE OF THE STORE THE OF OF THE OF THE OF THE OF	0 0.001601 0.002 0.015 0 0 0 0.002 0.015 0 0 0.002 0.015 0 0.00265 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015	75 0.00242 0 75 0.001756 0 75 0.002815 0 75 0.002815 0 75 0.002841 0 75 0.002287 0 75 0.002287 0 75 0.002357 0 75 0.002358 0 75 0.002352 0	0 0.002208 0.023681 0 0 0 0.02220 0 0 0 0 0 0.02568 0 0 0.02568 0 0 0.02568 0 0 0.02568 0 0 0 0.025143 0 0 0 0.025143 0 0 0 0.025143 0 0 0 0 0.025143 0 0 0 0 0.025143 0 0 0 0 0.025145 0 0 0 0 0.025145 0 0 0 0.025468 0 0 0 0 0.025468 0 0 0 0.025468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contraction (Contraction) (Con
EMFAC2017 (v1.0.2) Envirol Region Type: County Region: SACKAMENTO Calendar How 2015 Instant. Annual Vestice Calendination. IMPACTEE Counts. Index[day.SacvAnt, Sept]da	1 Categories			10	Vergilaritaria Distribution	• EINTHE EINTYI SHELLA CARAGE CARAKE EINNE	O CANARAY CITANAN CHRISTA STUDIOR STUDIOR CANALARY	6 22830638 6-0454677	0 0.205662 305.47521	0 573336 0.0039893	0 0.0034000 0.00110642	O SOUTHET COOK SEENOO SOUTHE	4 0.000940468 0.000 4.00	ITS COCOMPACE -	0 0.000%422 0.000%128	0 033382449
SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO SACRAMENTO	2014/01/10/2012 (URA) 2025 LDA 2025 LDA 2025 LDA 2025 LDA 2025 LDTI 2025 LDTI 2025 LDTI 2025 LDT2 2025 LDT2 2025 MDV 2025 MDV	Agregated Agregated Agregated Agregated Agregated Agregated Agregated Agregated Agregated Agregated Agregated Agregated Agregated	tyred nuel Aggregated GAS Aggregated DSL Aggregated DSL Aggregated GAS Aggregated GAS Aggregated GAS Aggregated DSL Aggregated DSL Aggregated CAS Aggregated DSL Aggregated DSL Aggregated DSL Aggregated DSL Aggregated DSL	Pagalabia Viter N C05020.3 2008330 00081.75 C0502.3 2008330 00081.75 C0502.3 73042.04 15 C0502.3 73042.04 15 C0502.3 73042.04 15 FM032.1 2008.01 15 S14.2005 2004.013 16 S14.3005 2004.020 1 1470.040 20075.26 1 14020.27 20082.25 2 2004.043 31507.02 1 14020.27 20082.25 2 2016.025 3150.76 1 14020.27 20082.25 2 2016.026 10507.02 2 2016.027 2 2 2016.026 10507.02 2 2016.027 2 2	NEWN 2072207 0.006045 NEW 2006157 0.016003 NEW 207243 0.01509 NEW 207243 0.01509 0000 0.01600 NEW 207243 0.01509 0000 0.01600	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1,00 1,00 <th< td=""><td>Control Control Contro</td><td>ULL 80_JTH26 C014884 C0 0 0 117728 244.5801 0 0 11848761 0 0 11848761 0 0 220097 286.8941 0 0 450.3198 0 0 2201874 0 0 2201874 0 0 2201874 0 0 0 0 0 2201874 0 0 0 0 0 2201874 0 0 0 0 0 2201874 0 0 0 0 0 0 0 0</td><td>UNE 0015782 CALUMA CAU 0 51.5375 (0.01165 0 61.2004 (0.00253) 0 61.2004 (0.00253) 0 61.2004 (0.00253) 0 61.2024 (0.002757 0 60.00058 0 60.00058 0 0 0 0 62.2024 (0.00058) 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Loss Out_JTHE PAGE Note Page 0 0.054285 0.001333 0 0.0004542 0.001543 0 0.001613 0.001513 0 0.00213 0.001513 0 0.00213 0.001513 0 0.00213 0.001374 0 0.00213 0.001374 0 0.002134 0.001374 0 0.002134 0.001374 0 0.0021374 0.0040374 0 0.0040374 0.0040374</td><td>1000 2000 <td< td=""><td>0 0.001659 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015 0 0.002015 0.002 0.015</td><td>75 0.00242 1 75 0.001748 75 0.001748 75 0.001748 75 0.004333 15 0 1 75 0.004333 175 0.002309 175 0.002309 175 0.002309 175 0.0023703 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.002370 175 0.002370 175 0.002370 17</td><td>0 0.00051 0.000111 0 0 0.0206 0 0 0 0 0.0206 0 0.02572 0 0 0.072041 0 0 0 0 0.02065 0.025147 0 0 0.02065 0.02247 0 0 0.02065 0.02247 0 0 0.02065 0.02045 0.02065 0.02065 0.025147 0 0 0.02065 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></td<></td></th<>	Control Contro	ULL 80_JTH26 C014884 C0 0 0 117728 244.5801 0 0 11848761 0 0 11848761 0 0 220097 286.8941 0 0 450.3198 0 0 2201874 0 0 2201874 0 0 2201874 0 0 0 0 0 2201874 0 0 0 0 0 2201874 0 0 0 0 0 2201874 0 0 0 0 0 0 0 0	UNE 0015782 CALUMA CAU 0 51.5375 (0.01165 0 61.2004 (0.00253) 0 61.2004 (0.00253) 0 61.2004 (0.00253) 0 61.2024 (0.002757 0 60.00058 0 60.00058 0 0 0 0 62.2024 (0.00058) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Loss Out_JTHE PAGE Note Page 0 0.054285 0.001333 0 0.0004542 0.001543 0 0.001613 0.001513 0 0.00213 0.001513 0 0.00213 0.001513 0 0.00213 0.001374 0 0.00213 0.001374 0 0.002134 0.001374 0 0.002134 0.001374 0 0.0021374 0.0040374 0 0.0040374 0.0040374	1000 2000 <td< td=""><td>0 0.001659 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015 0 0.002015 0.002 0.015</td><td>75 0.00242 1 75 0.001748 75 0.001748 75 0.001748 75 0.004333 15 0 1 75 0.004333 175 0.002309 175 0.002309 175 0.002309 175 0.0023703 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.002370 175 0.002370 175 0.002370 17</td><td>0 0.00051 0.000111 0 0 0.0206 0 0 0 0 0.0206 0 0.02572 0 0 0.072041 0 0 0 0 0.02065 0.025147 0 0 0.02065 0.02247 0 0 0.02065 0.02247 0 0 0.02065 0.02045 0.02065 0.02065 0.025147 0 0 0.02065 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0 0 0 0 0 0 0 0 0 0</td><td></td></td<>	0 0.001659 0.002 0.015 0 0 0.002 0.015 0 0 0.002 0.015 0 0.002015 0.002 0.015	75 0.00242 1 75 0.001748 75 0.001748 75 0.001748 75 0.004333 15 0 1 75 0.004333 175 0.002309 175 0.002309 175 0.002309 175 0.0023703 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.0023700 175 0.002370 175 0.002370 175 0.002370 17	0 0.00051 0.000111 0 0 0.0206 0 0 0 0 0.0206 0 0.02572 0 0 0.072041 0 0 0 0 0.02065 0.025147 0 0 0.02065 0.02247 0 0 0.02065 0.02247 0 0 0.02065 0.02045 0.02065 0.02065 0.025147 0 0 0.02065 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0.02065 0.025147 0 0 0 0 0 0 0 0 0 0	
MORMENTO	203 UBU8	Aggregated	Agregated 2%	CARECTON 76.54290761 CARE OF Model Adjustment Fo Year Noz Dohan 75 2025 1.0018	Weighted Average IP*. CODEXETS Calculated 871218122 0.0009817 attest for baseline tight Deviy While Device OG E Supp TOC E shall PM Eshnal CC 1.0016 1.0016 1.0074 1	1.0055	0 6.34138432 6139858 61398128 61398628 61398628 61398628 64395897	0 2.360758 6.3699838 0 0.6468387	0 0.3286880 266532003 0 0 1364.9988	CHARGESSIG BARKMAN D	0 0.0134808 0.02134796 0 0 0.02039645	0 1.00173/78 6.008 1.051790 1.001398	0 030560875 0.000 0.00 0 0 0.005 0.0058			0 027330488 0 0

2025 1.0018 1.0016 1.0016 1.0014 1.0025 "Use of adutment tacking accurate for implementation of the SAFE Valicle Rule Part Che Source: https://wwl.arb.ca.gov/maei/emfac_off_model_adjustment_tackon_timal_dnaft.pdf

Constrution Energy

Table 4.6-3 Estimated Fuel Consumption During Project Construction

Segment and Facility	Total Emissio	ns (metric tons C	0 ₂ e) per Year	Emission Factor	Fuel U	sage b (gallons	/Year)	Total Energy
Segment and Facinty	2021	2022	2023	(MT CO ₂ /gallon) a	2021	2022	2023	(MMBtu)
San Joaquin County								
LODI STATION	692	0	0	1.02E-02	68,109	0	0	9,406
LODI STATION - SOUTH ALTERNATIVE	692	0	0	1.02E-02	68,109	0	0	9,406
TRACK CURVE RECONSTRUCTION EAST MARCH LN TO EAST SWAIN RD	0	60	0	1.02E-02	0	5,907	0	816
TRACK CURVE RECONSTRUCTION NORTH OF NORTH NEW HOPE RD	0	60	0	1.02E-02	0	5,907	0	816
HAMMER LANE SIDING UPGRADE	0	0	120	1.02E-02	0	0	11,814	1,631
THORNTON SIDING UPGRADE & EXTENSION	0	0	240	1.02E-02	0	0	23,628	3,263
LODI SIDING	480	0	0	1.02E-02	47,256	0	0	6,526
Sacramento County ELK GROVE STATION ACCESS (Fourth Leg of Existing Intersection)	611	θ	θ	1.02E-02	60.094	θ	θ	8.299
ELK GROVE STATION ACCESS (Fourth Leg of Existing Intersection)	611 611	0	θ 0	1.02E-02	60.094	θ 0	θ 0	8,299
CITY COLLEGE STATION	0	0	614	1.02E-02	0	0	60,424	8,344
MIDTOWN SACRAMENTO STATION	785.40	0	0	1.02E-02	77,303	0	0	10.675
OLD NORTH SACRAMENTO STATION	0	0	919	1.02E-02	0	0	90,471	12,494
NATOMAS / SACRAMENTO AIRPORT STATION	755.78	0	0	1.02E-02	74,388	0	0	10,273
TRACK CURVE RECONSTRUCTION SOUTH OF DESMOND RD	0	60	0	1.02E-02	0	5,907	0	816
TRACK CURVE RECONSTRUCTION NORTH OF ELK GROVE-STATION	0	60	0	1.02E-02	0	5,907	0	816
PHILLIPS SIDING UPGRADE & EXTENSION	120.03	0	0	1.02E-02	11,814	0	0	1,631
POLLOCK SIDING UPGRADE	0	0	120	1.02E-02	0	0	11,814	1,631
SOUTH SACRAMENTO SIDING UPGRADE	0	0	283	1.02E-02	0	0	27,845	3,845
DEL PASO SIDING UPGRADE & EXTENSION	2021	0	0	1.02E-02	198,917	0	0	27,470
ELK GROVE SIDING	538	θ	θ	1.02E-02	53,000	θ	θ	7,319
NEW CROSSOVER	0	0	120	1.02E-02	0	0	11,814	1,631
Total Construction								
Fotal Construction San Joaquin County	1,172	120	360	1.02E-02	115,365	11,814	35,442	15,931
Total Construction Sacramento County	2,649	120	2,056	1.02E-02	260,725	11,814	202,369	36,005
Amortized Demands (over 30 years)								
Fotal Construction San Joaquin County					3,845.50	393.80	1,181.40	531
Total Construction Sacramento County					8,690.84	393.80	6,745.62	1,200

 $a \ U.S. \ Energy \ Information \ Administration \ 2016 \ (https://www.eia.gov/environment/emissions/co2_vol_mass.php)$

b Conservatively assumed diesel

Conversion Factors			_
Category	Amount	Units	
Diesel (heat content)	5.8	MMBtu/barrel	ht
Motor Gasoline	5.25	MMBtu/barrel	ht
Natural Gas	0.1	MMBtu/therm	ht
Propane	0.0913	MMBtu/gallon	ht
Kerosene	0.135	MMBtu/gallon	ht
Wood	20	MMBtu/cord	ht
Gallons per Barrel	42	gallons/barrel	ht

http://www.theclimateregistry.org/wp-content/uploads/2017/05/2017-Climate-Registry-Default-Emission-Factors.pdf http://www.theclimateregistry.org/wp-content/uploads/2017/05/2017-Climate-Registry-Default-Emission-Factors.pdf https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references https://www.eia.gov/environment/emissions/co2_vol_mass.php

https://www.eia.gov/energyexplained/index.cfm?page=about_btu

http://www.theclimateregistry.org/wp-content/uploads/2017/05/2017-Climate-Registry-Default-Emission-Factors.pdf

Operational Energy

Table 4.6-4 Estimated Energy Usage During Project Operation

County	Operational Activity	Energy Requirement	Energy Unit	Annual Energy Consumption (MMBtu)
San Joaquin				
	Locomotive Operations	264,976	Gallson Diesel/year	36,592
	Electricity Use	117,120	KWh/yr	400
	Subtotal			36,992
Sacramento				
	Locomotive Operations	348,001	Gallson Diesel/year	48,057
	Shuttle Service	4,844	Gallson Diesel/year	669
	Electricity Use	119,700	KWh/yr	409
	Subtotal			49,135
County	On-Road Fuel Demand Avoided Due to VMT Displaced by Rail Ridership Increase	Energy Requirement	Energy Unit	Annual Energy Consumption (MMBtu)
San Joaquin				
	DSL	(8,576)	Gallons Diesel/year	(1,184)
	GAS	(837,770)	Gallons Gasoline/year	(104,721)
	Subtotal			(105,906)
Sacramento				
	DSL	(11,263)	Gallons Diesel/year	(1,555)
	GAS	(1,100,270)	Gallons Gasoline/year	(137,534)
	Subtotal			(139,089)

County	Net Energy Reductions	Annual Energy Consumption (MMBtu)
San Joaquin		
	Operational Demand	36,992
	Operational Offsets	(105,906)
	Subtotal	(68,914)
Sacramento		
	Operational Demand	49,135
	Operational Offsets	(139,089)
	Subtotal	(89,954)

Conversion Factors

Category	Amount	Units	
Diesel (heat content)	5.8	MMBtu/barrel	http://www.theclimateregistry.org/wp-content/uploads/2017/05/2017-Climate-Registry-Default-Emission-Factors.pdf
Motor Gasoline	5.25	MMBtu/barrel	http://www.theclimateregistry.org/wp-content/uploads/2017/05/2017-Climate-Registry-Default-Emission-Factors.pdf
Natural Gas	0.1	MMBtu/therm	https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
Propane	0.0913	MMBtu/gallon	https://www.eia.gov/environment/emissions/co2_vol_mass.php
Kerosene	0.135	MMBtu/gallon	https://www.ela.gov/environment/emissions/co2_vol_mass.php
Wood	20		https://www.eia.gov/energyexplained/index.cfm?page=about_btu
Gallons per Barrel	42	gallons/barrel	http://www.theclimateregistry.org/wp-content/uploads/2017/05/2017-Climate-Registry-Default-Emission-Factors.pdf

Project Mobile Fuel Estimates:

County		GHG Emissions from Fuel Use	Emission Factor	2025
	Operational Activity	(metric tons CO2e/year)	(MT CO2/gallon) a	Gallons of Fuel
San Joaquin				
	Locomotive Operations	2692.16	1.02E-02	264,975.96
	Sub-total	2692.16		264,975.96
Sacramento				
	Locomotive Operations	3535.69	1.02E-02	348,001.28
	Airport Shuttle Service	49.21	1.02E-02	4,843.64
	Sub-total	3584.90		352,844.92
	On-Road Fuel Demand Avoided Due to VMT Displaced by Rail Ridership Increase			
San Joaquin		(7,532.4)		
	DSL	1%	1.02E-02	(8,576.23)
	GAS	99%	8.89E-03	(837,769.99)
Sacramento		(9,892.5)		
	DSL	1%	1.02E-02	(11,263.44)
	GAS	99%	8.89E-03	(1,100,269.72)

EMFAC2017 (v1.0.2) Emission Rates Region Type: County Region: SAN JOAUJIN Calendar Year: 2025 Season: Annual: EMFAC2011 Categories Venis:: milearday for VMT, tripsiday for Trips, gimle for RUNEX, PMBW and PMTW, gimp for STREX, HTSK and RUNES, givehideday for IDLEX, RESTL and DIURN Unis:: milearday for VMT, tripsiday for Trips, gimle for RUNEX, PMBW and PMTW, gimp for STREX, HTSK and RUNES, givehideday for IDLEX, RESTL and DIURN

Region	Calendar Year	Vehicle Category	Model Year	Speed	Fuel	Population	VMT	% VMT*
SAN JOAQUIN	20	025 LDA	Aggregated	Aggregated	GAS	323207.155	1.2E+07	61.34%
SAN JOAQUIN	20	025 LDA	Aggregated	Aggregated	DSL	3082.90456	124352	0.62%
SAN JOAQUIN	20	025 LDT1	Aggregated	Aggregated	GAS	32110.0094	1109936	5.58%
SAN JOAQUIN	20	025 LDT1	Aggregated	Aggregated	DSL	17.3278395	311.918	0.00%
SAN JOAQUIN	20	025 LDT2	Aggregated	Aggregated	GAS	102634.084	3642480	18.30%
SAN JOAQUIN	20	025 LDT2	Aggregated	Aggregated	DSL	690.251608	28424.9	0.14%
SAN JOAQUIN	20	025 MDV	Aggregated	Aggregated	GAS	87466.714	2711830	13.63%
SAN JOAQUIN	20	025 MDV	Aggregated	Aggregated	DSL	2099.72241	77150	0.39%
						Total:	19903126	100.00%

EMFAC2017 (v1.0.2) Er	mission Rates										
Region Type: County											
Region: SACRAMENTO											
Calendar Year: 2025											
Season: Annual											
Vehicle Classification: I	EMFAC2011 Categori	5									
Units: miles/day for VM	VIT, trips/day for Trip:	s, g/mile fi	or RUNEX, PMBW and PMTW, g/trig	for STREX, HTSK and RUN	LS, g/vehicle/day fo	or IDLEX, RESTL and	DIURN				
Region	Calendar Year		Vehicle Category		Model Year		Speed	Fuel	Population	VMT	% VMT*
SACRAMENTO	Calendar Year	2025						GAS	635993 874		
SACRAMENTO		2025 1			Aggregated		Aggregated	DSI	6649 4425		
					Aggregated		Aggregated				
SACRAMENTO		2025 I	LDT1		Aggregated		Aggregated	GAS	67470.7121	2184625	5.98
SACRAMENTO		2025 I	LDT1		Aggregated		Aggregated	DSL	140.833561	2204.9	0.01
SACRAMENTO		2025	LDT2		Aggregated		Aggregated	GAS	216827.922	7183352	19.66
SACRAMENTO		2025	LDT2		Aggregated		Aggregated	DSL	1470.04907	56082.3	0.15
SACRAMENTO		2025	MDV		Aggregated		Aggregated	GAS	149939.678	4660429	12.76
SACRAMENTO		2025	MD\/		Aggregated		Aggregated	DSL	3616.43487	131508	0.36

Construction Emissions for HRA by Location

	Total Construction-Related Emissions							
Project Element	Construction Start Year	Construction Duration (months)	PM ₁₀ Exhaust (pounds)					
LODI STATION	2021	14						
Equipment			26.88					
Onsite Vehicles			2.71					
Total			29.59					
THORNTON SIDING UPGRADE & EXTENSION	2023	4						
Equipment			9.15					
Onsite Vehicles			0.48					
Total			9.63					
LODI SIDING	2021	8	7.05					
Equipment	2021	0	18.29					
Onsite Vehicles			0.97					
Total			19.25					
CITY COLLEGE STATION	2023	8	17.23					
Equipment	2025	0	22.07					
Onsite Vehicles			1.32					
Total			23.38					
MIDTOWN SACRAMENTO STATION	2021	12	23.30					
Equipment	2021	12	28.20					
Onsite Vehicles			2.07					
Total			30.28					
OLD NORTH SACRAMENTO STATION	2023	14	50.20					
Equipment	2025	14	37.32					
Onsite Vehicles			2.82					
Total			40.14					
NATOMAS / SACRAMENTO AIRPORT STATION	2021	12	10.11					
			27.57					
Equipment Onsite Vehicles								
Total			1.82					
TRACK CURVE RECONSTRUCTION			29.39					
NORTH OF ELK GROVE STATION	2022	1						
Equipment			2.30					
Onsite Vehicles			0.12					
Total			2.42					
SOUTH SACRAMENTO SIDING	l		2.42					
UPGRADE	2023	4						
Equipment			10.97					
Onsite Vehicles			0.48					
Total			11.44					
DEL PASO SIDING UPGRADE &			11.1					
EXTENSION	2021	12						
Equipment			34.98					
Onsite Vehicles			2.15					
Total			37.13					

Operational HRA Summary

Rail Operations - Using Emissions Calculations From "Rail Operations" tab

	Total Trip Length miles		HRA Analysis Segment Length (km)	Total Daily Train Operational PM10 Emissions (lb/day)	Average emissions per 2KM segment (Ib/day)	Average PM10 emissions per 2KM segment (lb/year)		Average Emissions per Sub- Segement (Ib/day)	Average PM10 Emissions per Sub-Segement (lb/year)	
Emissions per 2km Segment	52.60	84.65	2.00	1.1549	0.0273	9.9593	-			Non-Station Segments
Emissions at tails of each segment (assume higher speed/shorter										
duration of time)	-	-	-	-	-		39.40%	0.0108	3.9240	40 MPH
Emissions approaching, idling at, and departing the station	-	-	-	-	-		60.60%	0.0165	6.0353	10 MPH

1. Estimated time at each idling, dynamic break, and at each notch level is representative of EPA 'Percent Operating Time at Each Notch Level' per EPA 1998 Locomotive Emission Standards Regulatory Support Document, Table 4-5 https://nepis.epa.gov/Exe/ZyPDF.cgi/P100F9QT.PDF?Dockey=P100F9QT.PDF

Shuttle Bus Operations - Unique to Sacramento/Natomas Station Area

					Emissions (tons/year)			E	missions (pounds/yea	ar)
Air District	Number of Busses per	One-Way	Distance per Trip	Vahiela Catagony	PM10	PM10	PM10	PM10	PM10	PM10
Air District	Trip	Trips per Day	(miles)	Vehicle Category	Fugitive Dust	Exhaust	Total	Fugitive Dust	Exhaust	Total
SMAQMD	1	14	8	Urban Bus (Diesel)	0.019454186	0.000178646	0.019632832	38.91	0.3573	39.27
					-				1.43E-01	

Conversion Factors:		Model Length (1-way)	
tons	pounds	5141.30	m
1	2000	3.19	mi